Independent Forestry Panel Presentation

Forest Health & Biosecurity

Dr Angus Carnegie

Senior Principal Research Scientist & Leader Forest Science, DPIRD

Adjunct Professor, Southern Cross University Fellow of Australasian Plant Pathology Society

espread and abundant: Strong population growth Rapid dispersal Introduction Few populations: Invader absent Stages of management Eradication Containment eradication might Geburzi & McCarthy 2018 **Tumut 2070**

All forests in New South Wales (Australia)

Risk, impact & management across the invasion curve

- Pathway & entry risk analysis
- Surveillance & diagnostics for early detection & response
- Surveillance, impact assessment, risk mapping (CC), & management strategies (biocontrol)

NSW Invasive Species Management Plan 2023-2028

Pathway and entry risk analysis

Identifying the risk of exotic pests and pathogens arriving and establishing in Australia

Pathways for entry:

Carnegie et al. (2017) Evaluating the costs and benefits of managing new and existing biosecurity threats to Australia's plantation industry. FWPA Report: PNC362-1415. Lawson, Carnegie et al. (2018) Risk of exotic pests to the Australian forest industry. Australian Forestry 81:3-13.

Increase imports of wood products...?

Pathway and entry risk analysis

Identifying the risk of exotic pests and pathogens arriving and establishing in Australia

What species arrive and establish:

Intercepted

Insect Families

Country of origin

Potential cost of exotic pests

Incursion risk scenario

Eradication attempt:

- 2181 ha
- \$26 million

Impact across one rotation (30 y):

- 90,000 ha
- 20% mortality
- \$65 million to \$106 million

Economically efficient to spend \$345,000 pa on biosecurity activities

Actual cost of exotic pests

Myrtle rust -environment

- \$3.5 M emergency response
- \$9 M plant nursery costs
- >\$5 M R&D
- Extinction of native flora
- *failure of environmental biosecurity system in Australia

Sirex wood wasp - plantation

- 5 million trees killed in single outbreak;
 \$21 M impact
- \$500,000 pa in management

Elm leaf beetle -urban forest

- \$250,000 pa urban tree management (LGA)
- Lost amenity, danger

European house borer - houses

>\$40 M in eradication & control

Carnegie & Nahrung (2019) Post-border forest biosecurity in Australia: response to recent exotic detections, current surveillance and ongoing needs. Forests 10:336

Carnegie & Pegg (2018) Lessons from the incursion of myrtle rust in Australia. Annual Review of Phytopathology 56:457-478

Plantation forest industry agree to Biosecurity Levy to fund national biosecurity activities

- National Forest Biosecurity Surveillance Program
- National Forest Biosecurity Manager (AFPA)

www.planthealthaustralia.com.au

Annual Operations Plan 2024-25

Version 1.0 – August 2024

NSW forest biosecurity surveillance program since 2014

Funded by Forestry Corporation of NSW

Forest Watch Australia program

Funded by plantation forest industry

Remote sensing and Al

Using technology to improve early-detection and eradication

Aerial imagery and machine learning to locate and map hosts of forest pests in urban areas

Pinus: 92% accuracy Platanus: 95% accuracy

Pest & pathogen diagnostics

Developing and validating diagnostic protocols to improve accuracy and timeliness

Key pests and pathogens (High Priority Pests)

For early-detection surveillance and Proof of Area Freedom surveillance

- High-throughput sequencing
- eDNA
- In-field diagnostics

Emergency response surveillance

DPIRD Forest Science lead forest pest and pathogen responses in NSW

Collaborate with Plant Biosecurity

Exotic strain of myrtle rust

Suspect Polyphagous Shot Hole Borer

<u>Callaghan, Carnegie et al. (2024) Response to the detection of Fusarium dieback associated with ambrosia beetles on Acer negundo in New South Wales.</u>

Australasian Plant Pathology 53:345–352

Forest health surveillance

Map the extent and severity of damage agents in plantations

Insect pests, diseases, vertebrate pests, nutritional imbalances, climatic disorders, weeds...

220,000 ha pines; 35,000 ha eucalypts

Forestry Corporation of NSW

Pest & disease management strategies to protect plantations

Biocontrol of sirex wood wasp

Fungicide control of dothistroma needle blight

Risk of climate change

Risk of drought-induced tree mortality in pine plantations

Carnegie et al. (2022) Current and future risks of drought-induced mortality in *Pinus radiata* in New South Wales, Australia. *Australian Forestry* 85:161–177 Kathuria, Carnegie et al. (2024) https://mailchi.mp/dpi.nsw.gov.au/0jhg6mn691-8307974

Impact of myrtle rust in native ecosystems

Biol Invasions (2016) 18:127-144 DOI 10.1007/s10530-015-0996-y

Impact of the invasive rust *Puccinia psidii* (myrtle rust) on native Myrtaceae in natural ecosystems in Australia

Angus J. Carnegie · Amrit Kathuria · Geoff S. Pegg · Peter Entwistle · Matthew Nagel · Fiona R. Giblin

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia

K. Berthon^{a,*}, M. Esperon-Rodriguez^a, L.J. Beaumont^a, A.J. Carnegie^b, M.R. Leishman^a

Austral Ecology (2018) 43, 56-68

Impacts of the invasive fungus Austropuccinia psidii (myrtle rust) on three Australian Myrtaceae species of coastal swamp woodland

LAURA FERNANDEZ WINZER, 1,2 to D ANGUS J. CARNEGIE, 2,3 D GEOFF S. PEGG^{2,4,5} (D) AND MICHELLE R. LEISHMAN¹ (D)

Australasian Plant Pathol. (2012) 41:13-29

Angus J. Carnegie · Jonathan R. Lidbetter

in Australia

Rapidly expanding host range for *Puccinia psidii* sensu lato

https://doi.org/10.1007/s10530-018-1891-0

Predicting impact of Austropuccinia psidii on populations of broad leaved Melaleuca species in Australia

G. S. Pegg 1 D. J. Lee2 · A. J. Carnegie3

Southern Forests 2020, 82(3): 280-291 Printed in South Africa — All rights reserved Copyright © NISC (Pty) Ltd
SOUTHERN FORESTS

Fire and rust - the impact of Austropuccinia psidii (myrtle rust) on regeneration of Myrtaceae in coastal heath following wildfire

GS Pegg1* 0, P Entwistle2, FR Giblin1 and AJ Carnegie3 0

Australasian Plant Pathology (2019) 48:385-393 https://doi.org/10.1007/s13313-019-00640-4

Endangered species face an extra threat: susceptibility to the invasive pathogen Austropuccinia psidii (myrtle rust) in Australia

Katherine A. Berthon 1.2 · Laura Fernandez Winzer 2 · · · · · · Karanjeet Sandhu 3 · · Will Cuddy 3.4 · · Anthony Manea 2 · Angus J. Carnegie⁵ · Michelle R. Leishman²

Biol Invasions (2020) 22:2357-2369 https://doi.org/10.1007/s10530-020-02260-2

Direct and indirect community effects of the invasive plant pathogen Austropuccinia psidii (myrtle rust) in eastern Australian rainforests

Laura Fernandez-Winzer · Katherine A. Berthon · Peter Entwistle · Anthony Manea · Nélida Winzer · Geoff S. Pegg · Angus J. Carnegie · Michelle R. Leishman

Trends in Ecology & Evolution

Imminent Extinction of Australian Myrtaceae by Fungal Disease

Roderick J. Fensham. 1,2,* Angus J. Carnegie,3 Boris Laffineur. 1,2 Robert O. Makinson,⁴ Geoff S. Pegg,⁵ and Jarrah Wills^{1,2}

Genetic diversity of the myrtle rust pathogen (Austropuccini psidii) in the Americas and Hawaii: Global implications for

invasive threat assessments J. E. Stewart^{1,*} O | A. L. Ross-Davis^{2,*} O | R. N. Graça³ | A. C. Alfenas⁴ O T. L. Peever⁵ | J. W. Hanna² | J. Y. Uchida⁶ | R. D. Hauff⁷ | C. Y. Kadooka⁶ M.-S. Kim⁸ | P. G. Cannon⁹ | S. Namba¹⁰ | S. Simeto¹¹ | C. A. Pérez¹² | M. B. Rayamajhi¹³ | D. J. Lodge¹⁴ | M. Arguedas¹⁵ | R. Medel-Ortiz¹⁶ M. A. López-Ramirez¹⁶ | P. Tennant¹⁷ | M. Glen¹⁸ | P. S. Machado⁴

A Global Assessment of the State of

Plant Health

A. R. McTaggart¹⁹ | A. J. Carnegle²⁰ | N. B. Klopfenstein²

y^{1,2,3,4,1} and Global Plant Health Assessment Project (GPHA

PLOS ONE

Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland

Geoff Pegg^{1,2*}, Tamara Taylor³, Peter Entwistle⁴, Gordon Guymer⁵, Fiona Giblin¹. Angus Carnegie^{2,6}

Myrtle Rust in Australia

A National Action Plan

July 2020

RO Makinson, GS Pegg, AJ Carnegie

Decline in forest health & biosecurity expertise

Decline in technical expertise in forest health and biosecurity in Australia, as represented by membership on the peak national technical expert committee.

The bulk of technical expertise is directly funded by the forest industry.