Ecological Sustainability in State Forests

Brad Law

Principal Research Scientist, NSW DPI Adjunct, Queensland University of Technology

12 October 2024

regional.nsw.gov.au

"passive acoustic monitoring (PAM) has emerged as a transformative tool for applied ecology, conservation and biodiversity monitoring" (Ross et al. 2023)

Functional Ecology

REVIEW 🔂 Open Access 💿 🚺

Passive acoustic monitoring provides a fresh perspective on fundamental ecological questions

Samuel R. P.-J. Ross X, Darren P. O'Connell, Jessica L. Deichmann, Camille Desjonquères, Amandine Gasc, Jennifer N. Phillips, Sarab S. Sethi, Connor M. Wood, Zuzana Burivalova

First published: 20 January 2023 | https://doi.org/10.1111/1365-2435.14275

Handling Editor Oscar Godoy

Limitations of acoustics for Koalas

- Restricted to male bellows, although koalas typically occur in 1:1 sex ratio
- Ideal for regional scale assessments of occupancy
- Acoustic arrays can be used for density
- Other methods required for fine-scale habitat use; e.g. GPS-tracking
- Smith and Pile (2024) criticise acoustics suggesting males are transient and broadly distributed across differing habitat quality, but:
- based on flawed methods not accounting for detection probability (essential for fauna surveys)
- limited sampling in one forest
- did not consider DPIRD's radio-tracking and GPS data on male vs female koala habitat use

DPIRD Tracking (>12,000 data points):

- all koalas were resident in the forestry landscapes studied
- both sexes selected similar tree species and medium-sized tree sizes;
- home ranges of both sexes comprised young regeneration and mature forest in exclusion zones

Female koala home range across young regenerating forest and harvest exclusions

DPI Koala Research Overview (2014-2024)

- Koala habitat mapping to trigger management in CIFOA
- *<u>Regional</u>* studies of koala occupancy (site presence)
 - surveys on public land
 - surveys on private land
 - annual monitoring in north-east NSW since 2015
- Local studies of koala density
 - Before/after timber harvesting experiment
 - Before/after black summer fires
- GPS tracking of *individual* koalas
 - 5-10 years post-harvest
 - i.e. multiple scales and lines of evidence

Koala Habitat Model

- field validated (Law et al. 2017)
- 1.7 million ha of moderate to high quality habitat
- now used to guide koala protection in clFOA
 extended to other regions by DCCEEW

How much is occupied by koalas?

Koala Occupancy in Public Hinterland Forests

- 171 sites (62 SFs; 32 NPs/NRs);
- 14,640 hours of nocturnal recording over 1,464 nights;
- 2,513 bellows recorded
- Mean probability of occupancy in public forest = 0.64 <u>+</u> 0.04
- No effect on site occupancy for harvest intensity or time since harvest
- Published: Law et al. (2018 PLOS)

Change in koala density before and after selective harvesting (NRC funded)

Chris O'Loughlin¹, Phil Eichinski³ & Paul Roe³

Male koala density – no effect of harvesting

Pre-harvest Post Harvest

(Law et al. 2022 - Nature Sci. Reports)

Forest Science Unit

Extensive Harvest Exclusions as per CIFOA Forestry Regulations

• 83 % of public forests already protected and never harvested

State forests

- *General harvest exclusions* –50-60 % of NSW state forests are excluded from timber harvest (since 2018 an increase on previous practices)
 - Old growth
 - Rainforest
 - Riparian buffers
 - Corridors connecting catchments
 - Wildlife clumps
- *Species specific conditions* additional protection for key threatened species habitat in harvest area, triggered by survey or habitat maps
- Koalas
- browse tree retention in harvest areas = 10 per ha in modelled koala habitat, so min of 2,500 trees for every 250 ha of koala habitat
- plus general exclusions (above)

Fauna Occupancy Monitoring – trends over time

^d Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, United States

e Pacific Southwest Research Station, USDA Forest Service, 1731 Research Park Dr., Davis, CA 95618, United States

^f Pacific Southwest Region, USDA Forest Service, 1323 Club Drive, Vallejo, CA 94592, United States

USA Spotted Owl (Jones et al. 2021)

Trend in koala occupancy in north-east public forests

- 224 acoustic sites in hinterland forests from 2015-2021
- Koala occupancy relatively stable despite drought and unprecedented wildfire in 2019
- No effect of timber harvesting or low severity fire
- Extent of high severity fire increased local extinction probability
- ≠ decline at the regional level because extensive severe fire was limited to 11 % of their habitat and offset by colonisation of unoccupied sites

Al acoustic recognisers for cost-effective monitoring

Koala Yellow-bellied glider Sugar glider Squirrel glider Powerful owl Sooty owl Masked owl Barking owl Boobook owl Grey-headed flying fox Glossy black cockatoo Gang gang cockatoo

Yellow-bellied glider trend in NE public forests (Law et al. 2024)

- Occupancy varied from~0.45-0.6
- 34 % decline in 2019
- FMIP Baseline occupancy from 1990s = 0.39±0.05 (Kavanagh et al. 2022)

Initial occupancy

CIFOA: Fauna monitoring - sensors for multiple species

- Cameras (established method)
- Ultrasonics (established method)
- Acoustics (newly emerged method)
 - Recognisers for individual species

Review Paper

Pairing camera traps and acoustic recorders to monitor the ecological impact of human disturbance

Rachel T. Buxton^{*}, Patrick E. Lendrum, Kevin R. Crooks, George Wittemyer

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523-1474, USA

Reconyx Infrared Trail Camera

Songmeter mini - acoustic and bat

CIFOA Fauna Monitoring

300 sites across CIFOA region Each site has two subplots=total 600 subplots Year 1 sampling in spring 2022

CIFOA Fauna Monitoring (acoustics, cameras, bat detectors):

Year 1 acoustics - raw data

- >211,000 detections (spring 2022, autumn 2023) across all regions
- 11 species detected

Northern Region - acoustics

	Spring 2022			Autumn 2023			Total		
Species	Number of detections	Number of sites	Naïve occupancy	Number of detections	Number of sites	Naïve occupancy	Number of detections	Number of sites	Naïve occupancy
Northern									
Barking Owl	44	2	0.07	1683	15	0.21	1727	17	0.167
Glossy Black-									
Cockatoo	80	8	0.27	258	27	0.38	338	35	0.343
Grey-headed									
Flying-fox	7684	14	0.47	233	8	0.11	7917	22	0.216
Koala	1194	24	0.8	223	21	0.29	1417	45	0.441
Masked Owl	90	13	0.43	804	55	0.76	894	68	0.667
Powerful Owl	2658	13	0.43	12103	43	0.6	14761	56	0.549 **
Sooty Owl	107	8	0.27	146	26	0.36	253	34	0.333
Southern Boobook	22928	29	0.97	19763	61	0.85	42691	90	0.882
Squirrel Glider	171	8	0.27	607	15	0.21	778	23	0.225
Sugar Glider	1411	23	0.77	3137	53	0.74	4548	76	0.745
Yellow-bellied Glider	758	14	0.47	664	19	0.26	1422	33	0.324
Total	115,179			95,912			211,091		

Naïve occupancy = proportion of sites at which species is detected (not adjusted for imperfect detection)

** 1990s POWL baseline modelled occupancy = 0.56 (Kavanagh et al. 2022)

FCNSW Pilliga (cypress) fauna monitoring program: Barking Owl (2018-2023)

Barking Owl widespread in Pilliga north-west:

- 12,850 calls detected
- Naive occupancy varied among years from 21-40 %
- Naïve occupancy 18 % in 2001 (Milledge 2004).

Greater Glider

- Hollow-dependent, sensitive to warming climate and high severity fire
- Extensive past research by DPI on timber harvesting
- Wildfire frequency and logging intensity have significant negative impacts (McLean et al. 2018).
- Populations can be maintained at or near pre-harvest levels when at least 40% of the original tree basal area is retained throughout harvested areas and retaining harvest exclusions in riparian strips (Kavanagh 2000) additional wildlife clumps should help
- Detailed occupancy maps developed for northern and southern region available to direct management (Kavanagh et al. 2022)
- Median occupancy probability in 1990s = 0.52 ± 0.05 for northern region and 0.506±0.217 for southern region (Kavanagh et al. 2022).

Threats to Australia's biodiversity

DOI: 10.1002/ece3.7920 Ecology and Evolution WILEY ORIGINAL RESEARCH A national-scale dataset for threats impacting Australia's imperiled flora and fauna Michelle Ward^{1,2,3} | Josie Carwardine⁴ | Chuan J. Yong^{1,2} | James E. M. Watson^{1,2} | Jennifer Silcock^{5,6} | Gary S. Taylor⁷ | Mark Lintermans⁸ | Graeme R. Gillespie^{9,10} Stephen T. Garnett¹¹ | John Woinarski¹¹ | Reid Tingley¹² | Rod J. Fensham⁵ | Conrad J. Hoskin¹³ | Harry B. Hines^{14,15} | J. Dale Roberts¹⁶ | Mark J. Kennard^{17,18} Mark S. Harvey^{16,19} | David G. Chapple¹² | April E. Reside^{1,2}

Received: 10 April 2021 Revised: 22 June 2021 Accepted: 25 June 2021

11756 WILEV_Ecology and Evolution FIGURE 2 Number of threatened abitatshi -level rise Storms and flooding ersecutior Human intrusion per threat remperature extremes Entanglement Direct harvest Genetic Lack of recruitment Collision Problematic natives Bycatch Small population sufficient dat ungulate AUCTION AND MININING

Australian taxa and relative level of impact for each subcategory threat, nested within the corresponding broad-level threat class. See Table 2 for symbols representing each broad-level threat. Relative levels of impact are color-coded as dark purple (high impact), maroon (medium impact), tangarine (low impact), bronze (negligible impact), and teal (insufficient data). The scale bar indicates the cumulative number of taxa impacted

WARD ET AL.

- Forestry has a low ranking ٠
- Most species listed as threatened by forestry do not occur in NSW •
- **Environmental protections** ٠