MDPI Article ## Leaching via Weak Spots in Photovoltaic Modules Jessica Nover¹, Renate Zapf-Gottwick ^{1,*}, Carolin Feifel ², Michael Koch ² and Juergen Heinz Werner ¹ - ¹ Institute for Photovoltaics and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany; jessica.nover@ipv.uni-stuttgart.de (J.N.); juergen.werner@ipv.uni-stuttgart.de (J.H.W.) - Institute for Sanitary Engineering, Water Quality, and Solid Waste Management, University of Stuttgart, 70569 Stuttgart, Germany; carolin.feifel@iswa.uni-stuttgart.de (C.F.); Michael.Koch@iswa.uni-stuttgart.de (M.K.) - * Correspondence: renate.zapf-gottwick@ipv.uni-stuttgart.de Abstract: This study identifies unstable and soluble layers in commercial photovoltaic modules during 1.5 year long-term leaching. Our experiments cover modules from all major photovoltaic technologies containing solar cells from crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). These technologies cover more than 99.9% of the world market. We cut out module pieces of 5×5 cm² in size from these modules and leached them in water-based solutions with pH 4, pH 7, and pH 11, in order to simulate different environmental conditions. Unstable layers open penetration paths for water-based solutions; finally, the leaching results in delamination. In CdTe containing module pieces, the CdTe itself and the back contact are unstable and highly soluble. In CIGS containing module pieces, all of the module layers are more or less soluble. In the case of c-Si module pieces, the cells' aluminum back contact is unstable. Module pieces from a-Si technology also show a soluble back contact. Long-term leaching leads to delamination in all kinds of module pieces; delamination depends strongly on the pH value of the solutions. For low pH-values, the time dependent leaching is well described by an exponential saturation behavior and a leaching time constant. The time constant depends on the pH, as well as on accelerating conditions such as increased temperature and/or agitation. Our long-term experiments clearly demonstrate that it is possible to leach out all, or at least a large amount, of the (toxic) elements from the photovoltaic modules. It is therefore not sufficient to carry out experiments just over 24 h and to conclude on the stability and environmental impact of photovoltaic modules. Keywords: leaching; long term; photovoltaic modules; delamination; solubility Citation: Nover, J.; Zapf-Gottwick, R.; Feifel, C.; Koch, M.; Werner, J.H. Leaching via Weak Spots in Photovoltaic Modules. *Energies* **2021**, *14*, 692. https://doi.org/10.3390/ en14030692 Academic Editor: Emmanuel Kymakis Received: 19 November 2020 Accepted: 26 January 2021 Published: 29 January 2021 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). ## 1. Introduction Photovoltaic (PV) modules are not a niche product anymore. The market started with an installed capacity of 20 MW in the early 1990s and increased up to 635 GW of total installed PV modules worldwide at the end of 2019 [1]. By assuming an average lifetime of 30 years, we have to deal with an increasing amount of waste from PV modules of up to 1.7 million tonnes until 2030 [2]. In principle, photovoltaics are a green technology; however, some PV modules contain toxic elements such as lead in the solder ribbons and metalization pastes, or even worse, such as in CdTe technology, the toxic elements Cd and Te in the photoactive layer itself. Many modules using copper indium gallium diselenide (CIGS) also contain cadmium in the so-called CdS buffer layer of the CIGS cells. This situation is mainly possible because PV modules are still excluded from the EU Directive on the restriction of hazardous substances (ROHS 2) in electrical and electronic equipment. This exclusion will remain until the next review of the RoHS 2, which is planned for 2021 [3]. For all other electric and electronic equipment (EEE) on the EU market, the tolerated maximum concentrations by weight in homogeneous materials for lead (Pb) and cadmium (Cd) are 0.1% and 0.01%, respectively. Clearly, in the case of the compounds CdS or CdTe, with 50% of the mass being Cd,