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Rock Classification

Isotropic Fractured Nonisotropic

Inhomogeneous

Homogeneous

Gassmann, Biot Biot?

Biot? Biot?
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Rock Types

Homogeneous, isotropic Heterogeneous, isotropic

GASSMANN’s theory works only for the microscopically homogeneous rock (e.g., uniform
spheres)
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Rock Types

It is impossible to use equivalent homoge-
neous rock to explain heterogeneous rocks.
This is especially true for clay-rich rocks,
ZOBACK & BEYERLEE (1975), BERRYMAN,
(1992)

A new theory must be developed for
fractured, heterogeneous rocks

(In)homogeneous, anisotropic
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Porous Rock

Porous rock = Solid Skeleton + Pore Space
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Porous Rock Characterization

Partially saturated
Gas + Liquid

Unsaturated
Gas

Saturated
Liquid(s)

Pore Space

Gassmann, Biot? Gassmann, Biot

Bulk density

ρ =
mass of solid skeleton + mass of pore space fluids

bulk volume of rock
ρ = (1 − φ)ρs + φρf = ρskeleton + φρf

12.05.05 – p.5/31



Compressibility Measurements

The vertical stress, S1, is applied to a hol-
low piston. The tube in the piston is used
to regulate the pore pressure, p. The lat-
eral stresses, S2 = S3, are applied to
the copper-jacketed specimen by injecting oil
through the side tube. The confining pres-
sure is defined as

pc = −σ =
1

3
(S1 + S2 + S3)

The jacketed or drained triaxial rock com-
pressibility:

β := −

1

V

„

∂V

∂pc

«

p,T

=
1

K

p

S1S1

S2 = S3
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Compressibility Measurements

The unjacketed triaxial rock compressibility
measurement. The confining pressure,

pc = −σ = 1

3
(S1 + S2 + S3),

is applied to all sides of the sample. The
tube in the piston is used to regulate the pore
pressure, p. Both the confining pressure and
the fluid pressure are changed at the same
time, so that their difference, pd = pc − p,
remains constant.

βs := −

1

V

„

∂V

∂p

«

pd,T

=
1

Ks

p

S1S1

S2 = S3

12.05.05 – p.7/31



Porous Rock Compressibilities

We can measure the following three compressibilities:

β := −

1

V

„

∂V

∂pc

«

p,T

=
1

K

0

@Biot : +
δǫ

δσ

˛

˛

˛

˛

˛

δp=0

≡

1

K

1

A

βs := −

1

V

„

∂V

∂p

«

pd,T

=
1

Ks

 

Biot : +
δǫ

δp

˛

˛

˛

˛

˛

δσ=0

≡

1

H

!

βφ := −

1

Vφ

„

∂Vφ

∂p

«

pd,T

=
1

Kφ

 

Biot : +
δζ

δp

˛

˛

˛

˛

˛

δσ=0

≡

1

R
= Sσ

!

where V is the bulk volume of the sample, Vφ is the pore space volume
A fourth compressibility may be defined as

βp := −

1

Vφ

„

∂Vφ

∂pc

«

p,T

=
1

Kp

0

@Biot : +
δζ

δσ

˛

˛

˛

˛

˛

δp=0

≡

1

H

1

A

but it depends on the porosity and the first two compressibilities above
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Porous Rock

At the reference state, we imagine a colored rock grain sample, in blue, filled with
colored water, in red. First, we remove the red water into a beaker and fill the pore space
with ordinary water. Second, we change the stress on the solid and the pore pressure,
and “measure” the new pore volume, Vφ. Third, we measure the new red water volume
under the new pore pressure, Vf . In general, the new pore volume and water volume will
not be equal to each other, and water will have to flow in/out of the blue rock volume.
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Biot’s Increment of Fluid Mass ζ

δpc

V, Vφ, mf

Final
State

δp

ρf

V0, Vφ0 mf0, Vf0, ρf0

Initial
State

pc = 0

p = 0

Initially Vf0 = Vφ0; the pore space is fully saturated with red fluid
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Biot’s Increment of Fluid Mass ζ
At the final state

mf = mf0

Vφ

Vf

After Biot, I will introduce the increment of fluid mass per
unit initial bulk volume V0, normalized by the initial fluid
density mf0/Vf0:

ζ :=
δmf/ρf0

V0

=

(
Vf0

V0

)

δ

(
Vφ

Vf

)

=
Vf0

V0

δVφVf0 − δVfVφ0

V 2

f0

ζ =
1

V0

(δVφ − δVf ) = φ0(ǫφ − ǫf )
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Talk Outline. . .

Refresher of Biot’s static poroelasticity model

Biot’s dynamic poroelastic model from the
non-equilibrium filtration theory

Low frequency reflections from a plane interface
between an elastic and an elastic fluid-saturated
layers

Different asymptotic regimes of the low-frequency
reflections

Conclusions
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Biot Theory. . .
The isotropic, permeable porous rock, and the
pore-filling fluid are in mechanical equilibrium

The stress is positive when it is tensile

The fluid pressure is positive

The state of rock and the fluid is described by the
total stress on the bulk material, σij, and the fluid
pressure field p (σij is the total force in direction i,
acting on the surface element whose normal is in
direction j)

Following BIOT, in one spatial dimension, the small
fluctuations of the total stress tensor, δσ, and of the
fluid pressure, δp, will be called σ and p
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Biot Theory. . .

ǫ ≡
δV

V0

=
1

K
σ +

1

H
p volumetric strain

ζ ≡
δmf

V0ρf0

=
1

H
σ +

1

R
p fluid volume per unit volume

ǫ

σ

∣
∣
∣
∣
∣
p=0

≡
1

K
drained material compressibility

ζ

σ

∣
∣
∣
∣
∣
p=0

=
ǫ

p

∣
∣
∣
∣
∣
σ=0

≡
1

H
poroelastic expansion coefficient

ζ

p

∣
∣
∣
∣
∣
σ=0

≡
1

R
= Sσ unconstrained specific storage
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Biot Theory. . .

−
p

σ

∣
∣
∣
∣
∣
ζ=0

≡ B =
R

H
SKEMPTON’s coefficient

ζ

p

∣
∣
∣
∣
∣
ǫ=0

≡
1

M
= Sǫ constrained specific storage

Sǫ = Sσ −
K

H2

K

H
≡ α BIOT-WILLIS’ coefficient

ζ = αǫ +
1

M
p
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Biot Theory. . .
The poroelastic expansion coefficient 1/H has no
analog in elasticity

It describes how much a change of pore pressure
also changes the bulk volume, while the applied
stress is held constant

1/H, and two other constants, K – drained bulk
modulus, and the unconstrained storage coefficient
Sσ, completely describe the linear, poroelastic
response to volumetric deformation

Other constants, such as SKEMPTON’s coefficient, or
BIOT-WILLIS’ coefficient can be derived from the
three fundamental BIOT constants
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Definitions. . .
p pressure increment, Pa
σ stress increment, Pa
u displacement of skeleton grains, m
ut velocity of displacement of skeleton grains, m/s
w superficial displacement of fluid relative to solid, m
W wt Darcy velocity of fluid relative to solid, m/s
β isothermal compressibility, Pa−1

̺ (1 − φ)ρg, “dry” bulk density, kgm−3

̺b (1 − φ)ρg + φρf , bulk density, kgm−3

ǫ δV/V , increment of volumetric strain
ε small parameter in series expansions
ζ δmf/ρf0

/V0, increment of fluid content per unit volume
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The Bulk Momentum Balance. . .
d

dt

∫

V

(
̺but
︸︷︷︸

solid+liquid
momentum

+ ̺fW
︸ ︷︷ ︸

relative liquid
momentum

)
dV

=

∮

δV

σ
︸︷︷︸

total
stress

·n dA +

∫

V

F b
︸︷︷︸

body
force

dV

Small perturbation from equilibrium

Incremental body force is zero

∂

∂t

(
̺but + ̺fW

)
= ∇ · σ
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The Bulk Momentum Balance. . .
Almost incompressible grains (α ≈ 1)

Poroelastic effective stress σ
′, and Terzaghi effective

stress are equal

1D normal deformations, σ = σxx

∂

∂t

(
̺but + ̺fW

)
=

∂σxx

∂x
=

∂σ′

xx

∂x
−

∂p

∂x

σ′

xx ≈ K
∂u

∂x
=

1

β

∂u

∂x

K is the drained bulk modulus
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Force Balance. . .

The second Newton’s law for the bulk solid is

̺b∂ttu + ̺f∂tW =
1

β
∂xxu − ∂xp (1)
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Darcy’s Law. . .
Consider steady state, single-phase flow of an
almost incompressible fluid

The superficial fluid velocity relative to the solid

W = −
κ

η

∂Φ

∂x

In horizontal flow, viewed from a non-inertial
coordinate system moving with the solid, the
differential of the flow potential is

dΦ
︸︷︷︸

Mechanical
energy

= dp
︸︷︷︸

Viscous
dissipation

+ ̺f∂ttu dx
︸ ︷︷ ︸

Inertial force
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Extended Darcy’s Law. . .
In time-dependent, single-phase flow, we can write

∂W

∂t
≈

Wfuture − W

τ

where Wfuture is a future value of Darcy’s velocity, and
τ is a characteristic time of transition

At constant position x, and constant value of Wfuture,
we can integrate

Wfuture − W ∝ exp

(
−t

τ

)

Therefore, τ is a characteristic relaxation time for
transient flow, e.g., JAMES C. MAXWELL, 1867
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Extended Darcy’s Law. . .

In time-dependent, single-phase flow, we now write

W future ≈ W +
∂W

∂t
τ + · · · = −

κ

η
∇Φ

This is the essence of ALISHAEV’s, and BARENBLATT
& VINNICHENKO’s extension of DARCY’s law

Dimensional analysis suggests that

τ = ηβfF (κ/L2)

where L is the characteristic length scale of REV
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Extended Darcy’s Law. . .

We characterize the dynamics of horizontal fluid flow in a
non-inertial coordinate system as follows

W + τ
∂W

∂t
= −

κ

η

∂p

∂x
− ̺f

κ

η

∂2u

∂t2
(2)
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Mass Balances & Isothermal EOS’s. . .
Slightly compressible fluid

∂(̺fφ)

∂t
= −

∂

∂x

(

̺fW + φ̺f
∂u

∂t

)

d̺f

̺f

= βfdp

Almost incompressible solid grains

∂[̺g(1 − φ)]

∂t
= −

∂

∂x

(

̺g(1 − φ)
∂u

∂t

)

1

̺g
d̺g = βgsdσx + βgfdp

βgs ≪ β and βgf ≪ βf
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Reduced Mass Balances. . .
With almost incompressible grains, the bulk
deformation occurs only through the porosity change

With some algebra, the mass balance equations
reduce to

∂2u

∂x∂t
+ φβf

∂p

∂t
= −

∂W

∂x
(3)

Note that we now have three unknowns u, p and W ,
and three balance equations: (1) Force balance of
bulk solid, (2) Force balance in viscous-dominated
fluid flow, and (3) Combined mass balance of fluid
and solid
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The Governing Equations. . .
For a linearly compressible rock skeleton and fluid, and
small perturbations from thermodynamic equilibrium:

Force balance of bulk material

̺b∂ttu + ̺f∂tW = −
1

β
∂xxu − ∂xp (1)

Force balance of viscous fluid

W + τ∂tW = −
κ

η

(
∂xp − ̺f∂ttu

)
(2)

F/S mass balances + EOS’s

φβf∂tp = −∂x (W + ∂tu) (3)
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Biot’s Theory. . .
We define the superficial fluid displacement

W := ∂tw (4)

and insert it into mass balance equation (3)

φβf∂tp = −∂xt(w + u)

By integration in t and differentiation in x, we obtain

∂xp = −
1

φβf

∂xx (u + w) (5)

Now we substitute the displacement (4) and the final
result (5) into the governing equations
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Biot’s Theory. . .
Our equations

̺b
∂2u

∂t2
+ ̺f

∂2w

∂t2
=

(
1

β
+

1

φβf

)
∂2u

∂x2
+

1

φβf

∂2w

∂x2

̺f
∂2u

∂t2
+ τ

η

κ

∂2w

∂t2
=

1

φβf

∂2u

∂x2
+

1

φβf

∂2w

∂x2
−

η

κ

∂w

∂t

Biot’s 1962 equations

∂2

∂t2
(
̺bu + ̺fw

)
=

∂

∂x

(

A11

∂u

∂x
+ M11

∂w

∂x

)

∂2

∂t2
(
̺fu + mw

)
=

∂

∂x

(

M11

∂u

∂x
+ M

∂w

∂x

)

−
η

κ

∂w

∂t
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Biot’s Theory. . .
We have assumed an isotropic porous medium and
incompressible grains

The Biot-Willis coefficient α = K/H ≈ 1

The undrained bulk modulus Ku = K + Kf/φ

The Biot coefficients are then constant and equal to

A11 = Ku ≈
1

β
+

1

φβf

and M11 = M = KuB ≈
1

φβf

where B = R/H is Skempton’s coefficient, 1/H being
the poroelastic expansion coefficient, and 1/R the
unconstrained specific storage coefficient
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Biot’s Theory. . .
The dynamic coupling coefficient in Biot’s theory, m,
is equal to the inverse fluid mobility, η/κ

The dynamic coupling coefficient is often expressed
through the tortuosity factor T : m = T̺f/φ

Hence, for the tortuosity and relaxation time, we
obtain the following relationship:

T = τ
ηφ

κ̺f
︸︷︷︸

Inv. kinematic
mobility

or τ = T
κ̺f

ηφ
(6)
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