

ENVIRONMENTAL INVESTIGATION SERVICES

REPORT

то

AUSBAO PYMBLE PTY LTD

ON

PRELIMINARY STAGE 2 ENVIRONMENTAL SITE ASSESSMENT

FOR

PROPOSED RESIDENTIAL DEVELOPMENT

AT

1, 1A, 3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW

REF: E24192Krpt2

22 MAY 2015

Document Distribution Record		
Report Reference	Distribution	Report Date
E24192Krpt2	1 * e-copy,	22 May 2015

Report prepared by:

Geoff Fletcher Environmental Scientist

Report reviewed by:

Adrian Kingswell Principal Environmental Scientist

© Document Copyright of Environmental Investigation Services (EIS)

This Report (which includes all attachments and annexures) has been prepared by EIS for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between EIS and the Client and is therefore subject to:

- a) EIS proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to EIS; and
- c) The terms of contract between EIS and the Client, including terms limiting the liability of EIS.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of EIS which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of EIS does so entirely at their own risk and to the fullest extent permitted by law, EIS accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

EXECUTIVE SUMMARY

Ausbao Pymble Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS) to undertake a Preliminary Stage 2 Environmental Site Assessment (PESA) for the proposed residential development at 1, 1A, 3 & 5 Avon Road and 4 & 8 Beechworth Road, Pymble.

The Report forms part of the Land and Environment Court of NSW (L&E Court) Proceedings No.10834 of 2013. The proceedings relate to the refusal by the Planning Assessment Commission (PAC), as delegate of the Minister for Planning (Minister), of the Major Project Application (MP 10_0219) for a multi-unit residential development at 1, 1A & 5 Avon Road and 4 & 8 Beechworth Road, Pymble (Site).

On 5 December 2014, the Land and Environment Court ordered that a Concept Plan approval be issued in respect of the development of the Site, and the PAC issued the Concept Plan Approval on 19 December 2014. The proceedings No.10834 of 2013 relating to the Major Project Application were stood over following the Court's order regarding the Concept Plan and the PAC's subsequent issue of the Concept Plan Approval.

EIS understand that the current proposed development, as described by drawings prepared by Marchese Partners (Rev S) will comprise three multi-storey residential building blocks on the Avon Road side of the drainage gully and four residential dwellings on the Beechworth Road side of the gully.

The proposed multi-storey buildings will vary in height from five residential levels (part of Building 1) to nine residential levels (Building 4). Basement car parking is proposed beneath the Buildings 1, 3 and 4 as shown on selected reference drawings prepared by Marchese partners.

Maximum excavation depths below existing ground level vary due to the existing topography and basement layout. For Building 1 and Building 3 the lowest basemen level is RL+126 (Drawing no MP 22.03 revS), such that maximum depth of excavation will be about 20m. For Building 4 the access corridor from the car parking area is at RL+132 (drawing no MP 22.05 revS), resulting in a maximum excavation of approximately 14m. Access to the car parking levels below these buildings is via a driveway off Avon Road to below the southern end of Building 1. Excavation for Building 3 below the driveway will be to about 13m depth below existing ground level at an offset of about 12m from the boundary to No 7 Avon Road.

The proposed four residential houses are located off Beechworth Road and each have a building footprint of 250 square metres. The existing dwelling at No. 1 Avon Road is to be retained. In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

The scope of work included the following:

- Review of previous investigation reports prepared by EIS for the site;
- A site inspection to identify Areas of Environmental Concern (AEC);
- Preparation of a Preliminary Conceptual Site Model (PCSM);
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment;
- Undertake a Tier 1 Risk Assessment and review of CSM; and
- Preparation of a report presenting the results of the assessment.

Samples for this investigation were obtained from 26 sampling points as shown on the attached Figure 2. This density is approximately 72% of the minimum sampling density recommended by the EPA. Selected soil samples obtained during the investigation were analysed for a range of Contaminants of Primary Concern (CoPC) as outlined in the report. The laboratory results were assessed against the SAC.

Summary of Results

An elevated concentration of lead was identified in the BH31 0-0.2m sample above the HIL-A criteria. However, the statistical analysis of the fill soil lead results met the SAC and therefore the risk to the identified human receptors was considered to be very low.

Asbestos fibres were not detected in any of the soil samples analysed for the ESA. Asbestos fibres were detected in a FCF sampled from the ground surface in the North West corner of the site (Sample Ref: S1).

The ESA has identified lead and B(a)P TEQ as CoPC associated with the fil above the health based SAC. The CoPC were above the SAC adopted for this investigation and may pose a risk to site receptors. EIS are of the opinion that the risk posed to human receptors is low but will require remediation and/or management. Only one B(a)P TEQ result was elevated therefore this may represent a minor hotspot.

TRH >C16-C34 (F2) and B(a)P have been identified as CoPC associated with the fill above the ecological SAC. The CoPC were above the EAC adopted for this investigation and may pose a risk to environmental receptors.

Environmental receptors on-site include proposed landscaped areas between buildings. Off-site receptors include surface water runoff into drainage channel.

EIS are of the opinion that the risk posed to on-site environmental receptors is low. Only two of the forty five samples exceeded the ecological criteria for B(a)P and only one sample exceeded the ecological criteria for TRH >C16-C34 (F3). There were no obvious impacts on site flora.

EIS are of the opinion that the elevated concentrations of heavy metals (copper and zinc) detected in the groundwater samples are typical of urban/regional groundwater conditions and are most likely associated leaking water infrastructure. No elevated copper or zinc soil concentrations above the soil HIL SAC were detected during the soil sampling program.

EIS note that the groundwater pH was outside of the ANZECC 2000 range. Again this has been attributed to regional issues.

Based on the results of the assessment, EIS are of the opinion that the groundwater PCC pose a low risk to the receptors identified in the CSM and groundwater remediation is not required.

The source of the PAHs and heavy metals including lead in the fill samples is considered to be associated with the ash and slag inclusions encountered in the fill matrix. The natural soil samples analysed below the fill profile were not impacted by the contaminants.

The demolition of the former house (number 4 Beechworth) in the north western section of the site could have resulted in remnant FCF on the ground surface.

Based on a review of the field logs and the laboratory data, EIS are of the opinion that the soil contamination is confined to the fill material at the site. The fill ranges in depth from approximately 0.2m to 2m bgl as shown on the attached Figure 2.

A B(a)P TEQ hot spot has been identified around the surface of BH5. Further investigation around this location should be undertaken to obtain a better understanding of the extent of the contamination and to better assess the hotspot.

Data Gaps

The assessment has identified the following data gaps:

- Areas beneath the existing buildings have not been included in the assessment;
- Areas of dense vegetation prevented the systematic sampling pattern. Ten of the proposed sampling locations have not been assessed; and
- Dense vegetation prevented an inspection of the majority of the ground surface at the site for FCF.

Conclusion

EIS consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented to address the data gaps and to minimise/better manage/characterise the risks:

- 1. Address the data gaps identified in Section 10.3 as part of an additional ESA;
- 2. Prepare a Remediation Action Plan (RAP) to outline remedial measures for the site;
- 3. Prepare a Validation Assessment (VA) report on completion of remediation;

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of the report.

TABLE OF CONTENTS

1	INTROD	UCTION	1
	1.1	Proposed Development Details	1
	1.2	Objectives	2
	1.3	Scope of Work	2
2	SITE INF	ORMATION	4
	2.1	Background	4
	2.2	Site Identification	5
	2.3	Site Location and Regional Setting	5
	2.4	Topography	6
	2.5	Site Inspection	6
	2.6	Surrounding Land Use	7
	2.7	Underground Services	7
	2.8	Regional Geology	7
	2.9	Hydrogeology	7
	2.10	Receiving Water Bodies	8
4	CONCEP	PTUAL SITE MODEL (CSM)	9
5	SAMPLI	NG, ANALYSIS AND QUALITY PLAN	11
	5.1	Data Quality Objectives (DQO)	11
	5.2	Soil Sampling Plan and Methodology	13
	5.3	Groundwater Sampling Plan and Methodology	15
	5.4	Analytical Schedule	17
6	SITE ASS	SESSMENT CRITERIA (SAC)	19
7	INVESTI	GATION RESULTS	21
	7.1	Subsurface Conditions	21
	7.2	Field Screening	21
	7.3	Soil Laboratory Results	22
	7.4	Groundwater Laboratory Results	24
8	DATA Q	UALITY ASSESSMENT	26
9	WASTE	CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL	29
10	TIER 1 R	ISK ASSESSMENT AND REVIEW OF CSM	30
	10.1	Source and Extent of Contamination	31
	10.2	Fate and Transport of Contaminants	32
	10.3	Data Gaps	33
11	CONCLU	ISION	34
	11.1	Regulatory Requirement	34
12	LIMITAT	TIONS	36
List of	In-Text T	ables	

Important Information About The Site Assessment Report

REPORT FIGURES:

Figure 1: Site Location Plan

Figure 2: Sample Location Plan Figure 3: HIL and GIL Site Contamination Data

Figure 4: EIL-URPOS & ESL-URPOS Site Contamination Data

LABORATORY SUMMARY TABLES:

Table A: Soil Laboratory Results Compared to HILs

Table B: Soil Laboratory Results Compared to HSLs

Table C: Soil Laboratory Results Compared to Waste Classification Guidelines

 Table D:
 Summary of Laboratory TCLP Results

Table E: Groundwater Laboratory Results

Table F: Groundwater Laboratory Results Compared to HSLs

Table G: Soil Laboratory Results Compared to EILs and ESLs

TABLE OF CONTENTS

 Table H:
 Soil Intra-Laboratory Duplicate Results & RPD Calculations

 Table I:
 Soil Intra-Laboratory Duplicate Results & RPD Calculations

 Table J:
 Soil Inter-Laboratory Duplicate Results & RPD Calculations

 Table K:
 Soil Inter-Laboratory Duplicate Results & RPD Calculations

Table L: Soil Inter-Laboratory Duplicate Results & RPD Calculations (Triplicate Sample)

Table M: Groundwater Intra-Laboratory Duplicate Results & RPD Calculations

Table N: Summary of QA/QC – Trip Spike and Trip Blank Results

APPENDICES:

Appendix A: Borehole Logs Appendix B: Laboratory Reports & COC Documents Appendix C: Report Explanatory Notes Appendix D: Calculation Sheets Appendix E: Field Work Documents

ABBREVIATIONS

	456
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Asbestos Health Screening Levels	ASL
Acid Sulfate Soil	ASS
Above Ground Storage Tank	AST
Below Ground Level	BGL
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene, Naphthalene	BTEXN
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Construction Management Plan	СМР
Chain of Custody	COC
Contaminant of Primary Concern	CoPC
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Assessment Criteria	EAC
Ecological Investigation Levels	EILs
Ecological Screening Level	ESL
Environmental Management Plan	EMP
Excavated Natural Material	ENM
Environmental Protection Agency	EPA
Environmental Site Assessment	ESA
Ecological Screening Level	ESL
Fibre Cement Fragments	FCF
General Approvals of Immobilisation	GAI
General Solid Waste	GSW
Health Investigation Level	HILs
Hardness Modified Trigger Values	HMTV
Health Screening Level	HSLs
International Organisation of Standardisation	ISO
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Local Government Authority	LGA
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	РАН

ABBREVIATIONS

Potential Contaminants of Concern	PCC
Photo-ionisation Detector	PID
Practical Quantitation Limit	PQL
Preliminary Site Investigation	PSI
Quality Assurance	QA
Quality Control	QC
Remediation Action Plan	RAP
Relative Percentage Difference	RPD
Restricted Solid Waste	RSW
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
Site Audit Statement	SAS
Site Audit Report	SAR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Semi-Volatile Organic Compounds	sVOC
Standard Sampling Procedure	SSP
Standard Water Level	SWL
Standard Sampling Procedure	SSP
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Underground Storage Tank	UST
Virgin Excavated Natural Material	VENM
Volatile Organic Compounds	VOC
Volatile Organic Chlorinated Compound	VOCC
Workplace, Health and Safety	WHS

1 INTRODUCTION

Ausbao Pymble Pty Ltd ('the client') commissioned Environmental Investigation Services (EIS)¹ to undertake a Preliminary Stage 2 Environmental Site Assessment (PESA) for the proposed residential development at 1, 1A, 3 & 5 Avon Road and 4 & 8 Beechworth Road, Pymble.

The Report forms part of the Land and Environment Court of NSW (L&E Court) Proceedings No.10834 of 2013. The proceedings relate to the refusal by the Planning Assessment Commission (PAC), as delegate of the Minister for Planning (Minister), of the Major Project Application (MP 10_0219) for a multi-unit residential development at 1, 1A & 5 Avon Road and 4 & 8 Beechworth Road, Pymble (Site).

On 5 December 2014, the Land and Environment Court ordered that a Concept Plan approval be issued in respect of the development of the Site, and the PAC issued the Concept Plan Approval on 19 December 2014. The proceedings No.10834 of 2013 relating to the Major Project Application were stood over following the Court's order regarding the Concept Plan and the PAC's subsequent issue of the Concept Plan Approval.

The site location is shown on Figure 1 and the assessment was confined to the site boundaries as shown on Figure 2. The proposed development area is referred to as 'the site' in this report.

This report has been prepared to support the lodgement of a Development Application (DA) for the proposed residential development.

1.1 <u>Proposed Development Details</u>

EIS understand that the current proposed development, as described by drawings prepared by Marchese Partners (Rev S) will comprise three multi-storey residential building blocks on the Avon Road side of the drainage gully and four residential dwellings on the Beechworth Road side of the gully.

The proposed multi-storey buildings will vary in height from five residential levels (part of Building 1) to nine residential levels (Building 4). Basement car parking is proposed beneath the Buildings 1, 3 and 4 as shown on selected reference drawings prepared by Marchese partners.

Maximum excavation depths below existing ground level vary due to the existing topography and basement layout. For Building 1 and Building 3 the lowest basemen level is RL+126 (Drawing no MP 22.03 revS), such that maximum depth of excavation will be about 20m. For Building 4 the access corridor from the car parking area is at RL+132 (drawing no MP 22.05 revS), resulting in a maximum excavation of approximately 14m. Access to the car parking levels below these buildings is via a driveway off Avon Road to below the southern end of Building 1. Excavation for Building 3 below the

¹ Environmental consulting division of Jeffery & Katauskas Pty Ltd (J&K)

driveway will be to about 13m depth below existing ground level at an offset of about 12m from the boundary to No 7 Avon Road.

The proposed four residential houses are located off Beechworth Road and each have a building footprint of 250 square metres. The existing dwelling at No. 1 Avon Road is to be retained.

1.2 <u>Objectives</u>

The assessment objectives are to:

- Assess the potential for site contamination;
- Assess the potential risk the contamination may pose to the site receptors;
- Provide a preliminary waste classification for the off-site disposal of soil; and
- Comment on the suitability of the site for the proposed development/landuse.

1.3 <u>Scope of Work</u>

The assessment was undertaken generally in accordance with an EIS proposal (Ref: EP8690K2.1) of 20 March 2015 and written acceptance from the client of 23 March 2015.

The scope of work included the following:

- Review of previous investigation reports prepared by EIS for the site;
- A site inspection to identify Areas of Environmental Concern (AEC);
- Preparation of a Preliminary Conceptual Site Model (PCSM);
- Design and implementation of a sampling, analysis and quality plan (SAQP);
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment;
- Undertake a Tier 1 Risk Assessment and review of CSM; and
- Preparation of a report presenting the results of the assessment.

The report was prepared with reference to regulations/guidelines outlined in the table below. Individual guidelines are also referenced within the text of the report.

Table 1-1: Guidelines

Guidelines/Regulations

Contaminated Land Management Act 1997²

State Environmental Planning Policy No.55 – Remediation of Land 1998³

Guidelines for Consultants Reporting on Contaminated Sites 2011⁴

² NSW Government Legislation, (1997), *Contaminated Land Management Act 1997*. (referred to as CLM Act 1997)

³ NSW Government, (1998), *State Environmental Planning Policy No.* 55 – *Remediation of Land.* (referred to as SEPP55)

Guidelines/Regulations

Guidelines for the NSW Site Auditor Scheme, 2nd Edition 2006⁵

National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended 2013⁶

⁴ NSW Office of Environment and Heritage (OEH), (2011), *Guidelines for Consultants Reporting on Contaminated Sites.* (referred to as Reporting Guidelines 2011)

⁵ NSW DEC, (2006), *Guidelines for the NSW Site Auditor Scheme*, 2nd ed. (referred to as Site Auditor Guidelines 2006)

⁶ National Environment Protection Council (NEPC), (2013), *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

2 <u>SITE INFORMATION</u>

2.1 Background

2.1.1 <u>Stage 1 Environmental Site Assessment (EIS, 2012⁷)</u>

EIS was commissioned by JW Neale Pty Ltd (Receivers and Managers Appointed) in 2010 to undertake a Stage 1 ESA for the proposed multi-storey residential development at 1, 1A & 5 Avon Road, 1 Arilla Road, 4 & 8 Beechworth Road, Pymble NSW. Marchese Partners on behalf of JW Neale Pty Ltd (Receivers and Managers Appointed) commissioned EIS in 2012 to amend the previous Stage 1 environmental assessment report, on the provision that the property identified as 1 Arilla Road, Pymble (Lot 7 in DP15541) was no longer considered to be part of the proposed development area.

The key issues identified in the stage 1 ESA included:

- The site has been used for residential purposes since 1930;
- A small orchard was located in the central section of the site prior to 1930 and up until 1961;
- Council records indicate that 4 Beechworth Road was formerly used as a vehicle repair yard in the early 1990's;
- Two separate residential buildings were demolished in the north western section of the site between 1986 and 1994;
- There are no recorded notices listed on the NSW DECCW CLM or POEO register; and
- WorkCover have no records of underground storage tank licenses issued for the site.

Based on the scope of work undertaken for this investigation a number of potential contamination issues had been identified at this site. These included:

- The terraced gardens may have been constructed using imported fill material. The material used as backfill in Sydney in the early part of the twentieth century commonly contained a large proportion of ash/slag waste from coal burning. As a result this material commonly contains elevated concentrations of polycyclic aromatic hydrocarbons and heavy metals;
- The orchard identified in the south section of the site may have been treated with pesticides. Prior to 1945 the pesticides would have been of various heavy metals preparations, after 1945 organochlorine pesticides became common;
- The houses and structures at the site (both standing and demolished) may have contained hazardous building materials such as asbestos. Sub-floor areas of the houses may have been treated with pesticides; and
- The creek running through the site could have been a pathway for potential offsite contaminant sources (e.g. the railway) impacting on the site.

Based on the scope of the work undertaken EIS considered that the site could be made suitable for the proposed development provided that:

⁷ EIS, (2012), Report to JW Neale Pty Ltd (Receivers and Managers Appointed) on Stage 1 Environmental Site Assessment for Proposed Multi-Storey Residential Development at 5 Avon Road, Pymble, NSW. (Report Ref: E24192KrptRev1.2, dated December 2012) (referred to as EIS 2012 Report)

Preliminary Stage 2 Environmental Site Assessment 1, 1A, 3 & 5 Avon Road and 4 & 8 Beechworth Road, Pymble, NSW EIS Ref: E24192Krpt2

- An investigation is undertaken of the site that includes sampling and analysis. Ideally this should be undertaken after the vegetation has been cleared from the site;
- A waste classification is assigned to any fill material that is excavated for offsite disposal;
- In the event that any significant contamination is encountered a Remedial Action Plan (RAP) is prepared; and
- A hazardous building materials survey of the site buildings and structures is undertaken prior to demolition.

2.2 <u>Site Identification</u>

Table 2-1: Site Identification

Site Address, Lot & Deposited Plan:	1 Avon Road, Pymble
	(Lot 1, DP 583803)
	1A Avon Road, Pymble
	(Lot 2, DP 583803)
	5 Avon Road, Pymble
	(Lot 2, DP205504)
	4 Beechworth Road, Pymble
	(Lot 1, DP403072)
	8 Beechworth Road, Pymble
	(Lot 3, DP403072)
Current Land Use:	Residential
Proposed Land Use:	Residential
Local Government Authority (LGA):	Ku-ring-gai Council
Current Zoning:	R2 Low Density Residential, R3 Medium Density Residential & E4
	Environmental Living
Site Area (m ²):	26,000
Geographical Location (MGA) (approx.):	N: 626407
VFF - J.	E: 332704
Site Location Plan:	Figure 1
Sample Location Plan:	Figure 2

2.3 Site Location and Regional Setting

The site is located in a predominantly residential area of Pymble. The site is bounded by the North Shore Railway line to the north, Avon Road to the east and Beechworth Road to the west.

2.4 <u>Topography</u>

The site is located within steep sloping regional topography with the site itself located on a south west facing and south east facing hillside. A drainage gully which drains in a south west direction is located between the two hillsides.

2.5 <u>Site Inspection</u>

A walkover inspection of the site was undertaken by EIS on 29 April 2015. The inspection was limited to accessible areas of the site and immediate surrounds. An internal inspection of buildings was not undertaken.

At the time of the inspection, the site was occupied by a number of residential premises. The entire site was heavily vegetated with some areas of the site inaccessible.

In the north east section of the site was an existing two storey brick dwelling (No 1 Avon Road). Access to the premises was via a walkway from Avon Road which ran parallel to the railway. What appeared to have once been a driveway to the property was covered by numerous small stockpiles which extended up to the existing building. The stockpiles consisted of clayey sand fill with sandstone cobbles and were probably dumped on the site illegally. Landscaped areas with sandstone terraced areas were observed around the building. An in ground swimming pool was located to the south of the building. A disused tennis court was located in the gully area towards the southern end of the site. The tennis court area appears to have been formed by cutting into the hillside slopes and filling close to the drainage gully. The tennis court was very overgrown.

The eastern section of the site was occupied by two separate single storey brick and weather board dwellings (No 3 & 5 Avon Road). At the time of the investigation No. 5 was in very poor dilapidated condition. Towards the north of No. 3 was an in ground swimming pool.

A two storey residential brick and weatherboard dwelling (No 8 Beechworth Road) was located in the west section of the site. This building was a battle-axe block behind No 6 Beechworth Road and built on relatively flat ground, however the site slope steepened towards the east. The eastern section which the house was constructed on appeared to have been filled to accommodate the natural topography of the hillside. What appeared to be an oil tank (possibly used for heating) was observed mounted on the wall towards the south east corner of the building.

A level grassed area was located towards the north western corner of the site which was behind No 2 Beechworth Road. This area of the site steepened towards the east and was densely overgrown. Building materials were observed on the ground surface of the steep slope towards the east. The 2012 report indicated that fibre cement fragments (FCF) were evident within the building materials. A FCF was observed and sampled during the current investigation in the same area.

The site was bound by residential properties to the east, south and west. The site was partly bounded by Avon Road to the east and Beechworth Road to the west. The site was bound by the

North Shore Railway line to the north. Approximately 100 m beyond the North Shore Railway were residential premises beyond which was the Pacific Highway.

2.6 <u>Surrounding Land Use</u>

The immediate surrounds included the following landuses:

- North Railway corridor
- South Residential landuses
- East educational and residential landuses
- West residential landuses.

2.7 <u>Underground Services</u>

The 'Dial Before You Dig' (DBYD) plans were reviewed for the assessment. A brief summary of the relevant information is presented below:

Service	Location	Potential Migratory Pathway
Sewer	The Sydney Water plan indicates a sewer passing through the site from both the north east and north west and joining towards the centre of the southern boundary of the site.	The backfill around the sewer could act as a potential migratory pathway.

Table 2-2: Summary of Relevant Services

2.8 <u>Regional Geology</u>

A review of the regional geological map of Sydney (1983⁸) indicates that the site is underlain by Ashfield Shale of the Wianamatta Group, which typically consists of black to dark grey shale and laminite.

2.9 <u>Hydrogeology</u>

A review of groundwater bore records available on the NSW Office of Water⁹ (NOW) online database was undertaken for the Stage 1 ESA. The search was limited to registered bores located within a radius of approximately 1km of the site.

Three groundwater bores were registered for monitoring purposes approximately 150m up-gradient to the north east of the site. Three bores located down gradient and approximately 600m to 900m south west of the site were registered for irrigation purposes.

A review of the regional geology and groundwater bore information indicates that the subsurface condition at the site is expected to consist of residual soils overlying relatively shallow bedrock. The

⁸ Department of Mineral Resources, (1983), 1:100,000 Geological Map of Sydney (Series 9130).

⁹ <u>http://www.waterinfo.nsw.gov.au/gw/</u>

occurrence of groundwater that could be utilised as a resource for beneficial use is considered to be relatively low under such conditions. A perched aquifer in the subsurface may be present.

2.10 <u>Receiving Water Bodies</u>

The site location and regional topography indicates that excess surface water flows have the potential to enter the drainage gully located in the centre of the site. This water body can be a potential receptor.

4 <u>CONCEPTUAL SITE MODEL (CSM)</u>

The AEC identified below are based on a review of the site and site history information outlined previously in this report. The AEC can either be a point source or widespread areas impacted by current or historical activities.

Table 4-1: CSM

AEC / Extent	PCC/CoPC	Potential Exposure Pathway and Media	Potential Receptors	
<u>Fill Material</u> – Entire Site	Heavy metals, TRH, BTEXN,	Direct Contact – dermal contact;	Human Receptors – Site occupants; visitors;	
The site appears to have been historically filled to	PAHs, OCPs, OPPs, PCB and	ingestion; and inhalation of dust, vapours	development and maintenance workers; and	
achieve existing levels. The fill may have been imported	asbestos	and fibres.	off-site occupants.	
from various sources and can contain elevated				
concentrations of contaminants.		Media - soil, groundwater and vapour.	Environmental Receptors – Flora and fauna at	
			the site and immediate surrounds; receiving	
			water bodies; others identified in the above	
			sections.	
Fuel Storage Facilities –Leakage and spillage of	Lead, TRH, BTEXN and PAHs	Direct Contact – dermal contact;	Human Receptors – As Above	
petroleum hydrocarbons could have resulted in site		ingestion; and inhalation of dust and		
contamination with the former use of number 4		vapours.	Environmental Receptors – As Above	
Beechworth Road as a vehicle repair yard in the early				
1990s. The storage of suspected oil for heating on the		Media - soil, groundwater and vapour.		
southern wall of number 8 Beechworth Road.				
Use of Pesticides – a small orchard was located in the	Heavy metals, OCPs, and	Direct Contact – dermal contact;	Human Receptors – As Above	
central section of the site prior to 1930 and up until	OPPs	ingestion; and inhalation of dust.		
1961. The use of pesticides during this period could			Environmental Receptors – As Above	
have resulted in potential contamination.		Media – soil and groundwater.		

AEC / Extent	PCC/CoPC	Potential Exposure Pathway and Media	Potential Receptors
<u>Hazardous Building Material</u> – The buildings on the site have been constructed prior to 1990's. Hazardous	Asbestos, lead and PCBs	<u>Direct Contact</u> – dermal contact; ingestion; and inhalation of dust and	Human Receptors – As Above
building materials were used for construction purposes during this period. The material can pose a potential		fibres.	Environmental Receptors – As Above
contamination source during demolition/development.		<u>Media</u> – soil and air.	
The aerial photographs indicate that former buildings at the site were demolished. The use of hazardous building material in the former buildings could have resulted in potential contamination.			

5 SAMPLING, ANALYSIS AND QUALITY PLAN

5.1 Data Quality Objectives (DQO)

The NEPM 2013 defines the DQO process as a seven step iterative planning tool used to define the type, quantity and quality of data needed to inform decisions relating to the environmental condition of the site.

The DQO process is detailed in the US EPA document *Guidance on systematic planning using the data quality process (2006¹⁰)* and the NSW DEC document *The Guidelines for the NSW Site Auditor Scheme, 2nd Edition (2006¹¹)*.

These seven steps are applicable to this assessment as summarised in the table below:

Step	Input
State the Problem	The CSM and Stage 1 ESA has identified AEC at the site which may pose a risk to the site receptors. An intrusive investigation is required to assess the risk and comment on the suitability of the site for the proposed development or intended landuse.
	The EIS project team will include: project principal (PP) and/or project associate (PA); project engineer/scientist (PE); and field engineer/scientist (FE) as outlined in the quality recorded checklist maintained for the project in accordance with our ISO 9001 certification.
Identify the Decisions/ Goal of the Study	 The data collection is project specific and has been designed based on the following information: Review of previous Stage 1 ESA prepared by EIS including site history; AEC, PCC, receptors, pathways and medium identified in the PCSM; Development of Site Assessment Criteria (SAC) for each media; and The use of decision statements outlined below:
	 Statistical analysis will be used to assess the laboratory data against the SAC. The following criteria will be adopted: The 95% Upper Confidence Limit (UCL) value of the arithmetic mean concentration of each contaminant should be less than the SAC; The standard deviation (SD) of the results must be less than 50% of the SAC; and No single value exceeds 250% of the relevant SAC.
	 Statistical calculations will not be undertaken if all results are below the SAC; and Statistical calculations will not be undertaken on the following:

Table 5-1: DQOs – Seven Steps

¹⁰ US EPA, (2006), *Guidance on Systematic Planning using the Data Quality Objectives Process*. (referred to as US EPA 2006)

¹¹ NSW DEC, (2006), *Guidelines for the NSW Site Auditor Scheme*, 2nd ed. (referred to as Site Auditor Guidelines 2006)

Step	Input
	 Health Screening Levels (HSLs) – elevated point source contamination associated with petroleum hydrocarbons can pose a vapour risk to receptors; and Groundwater Investigation Levels (GILs) – elevated GILs can indicate a wider groundwater contamination risk.
Identify Information Inputs	 The following information will be collected: Soil samples based on subsurface conditions; Groundwater samples from monitoring wells; Surface water samples from receiving water bodies identified at the site; Fibre Cement Fragments (FCF) in the vicinity of the sampling points; The SAC will be designed based on the criteria outlined in NEPM 2013. Other criteria will be used as required and detailed in this report; The samples will be analysed in accordance with the analytical methods outlined in NEPM 2013; Field screening information (i.e. PID data, presence of hydrocarbons etc.) will be taken into consideration in selecting the analytical schedule; and Any additional information that may arise during the field work will also be used as data inputs.
Define the Study Boundary	The sampling will be confined to the site boundaries as shown in Figure 2. Fill has been identified as an AEC. The source of fill has not been established. Fill is considered to be heterogeneous material with PCC occurring in random pockets or layers. The presence of PCC in between sampling points cannot be measured. The areas excluded from the investigation are outlined in the data gaps.
Develop the analytical approach (or decision rule)	 The following acceptable limits will be adopted for the data quality assessment: The following acceptance criteria will be used to assess the RPD results: results > 10 times the practical quantitation limit (PQL), RPDs < 50% are acceptable; results between 5 and 10 times PQL, RPDs < 75% are acceptable; results < 5 times PQL, RPDs < 100% are acceptable; and An explanation is provided if RPD results are outside the acceptance criteria. Acceptable concentrations in Trip Spike (TS), Trip Blanks (TB) and Field Rinsate (FR) samples. Non-compliance to be documented in the report; The following acceptance criteria will be used to assess the primary laboratory QA/QC results. Non-compliance to be documented: <u>RPDs:</u> Results that are < 5 times the PQL, any RPD is acceptable; and Results > 5 times the PQL, RPDs between 0-50% are acceptable; <u>1CS recovery and matrix spikes</u>: 70-130% recovery acceptable for metals and inorganics; 60-140% recovery acceptable for organics; and

Step	Input		
	 10-140% recovery acceptable for VOCs; <u>Surrogate spike recovery</u>: 60-140% recovery acceptable for general organics; and 10-140% recovery acceptable for VOCs; <u>Blanks</u>: All less than PQL. 		
Specify the NEPM performance repre- or acceptance testin criteria can b Decis to she indica The n evide	 NEPM 2013 defines decision errors as 'incorrect decisions caused by using data which is not representative of site conditions'. This can arise from errors during sampling or analytical testing. A combination of these errors is referred to as 'total study error'. The study error can be managed through the correct choice of sample design and measurement. Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. In this case, for example, the PCC identified in the CSM is considered to pose a risk to receptors unless proven not to. The null hypothesis has been adopted for this 		
Optimise the design for obtaining data	assessment. The most resource-effective design will be used in an optimum manner to achieve the assessment objectives.		

5.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology adopted for this assessment is outlined in the table below:

Aspect	Input		
Sampling Density	The NSW EPA Contaminated Sites Sampling Design Guidelines (1995 ¹²) recommend a sampling density for an environmental assessment based on the size of the investigation area. The guideline provides a minimum number of sampling points required for the investigation on a systematic sampling pattern.		
	The guidelines recommend sampling from a minimum of 36 evenly spaced sampling points for this site with an area of approximately 26,000m ² .		
	Samples for this investigation were obtained from 26 sampling points as shown on the attached Figure 2. This density is approximately 72% of the minimum sampling density recommended by the EPA.		

Table 5-2: Soil Sampling Plan and Methodology

¹² NSW EPA, (1995), *Contaminated Sites Sampling Design Guidelines*. (referred to as EPA Sampling Design Guidelines 1995)

Aspect	Input
	The stockpile at the north east section of the site was estimated to be approximately 70m ³ . Three samples were obtained from the stockpile. This meets the density recommended in the NEPM 2013.
Sampling Plan	The sampling locations were placed on a systematic plan with a grid spacing of approximately 30m between sampling locations. A systematic plan was considered suitable to address potential contaminants associated with the fill material.
	A fill stockpile was located in the central section of the site. Distribution of contamination in the stockpile was considered to be random. Adopting a grid for stockpiles was not considered practical as the stockpile was less than 75m ³ . Hence a random sampling plan was adopted
Exclusion Areas (Data Gaps)	Sampling was not undertaken in inaccessible areas of the site such as beneath existing buildings and dense overgrown vegetation. These areas have been excluded from the investigation.
Sampling Equipment	Soil samples were obtained on 30/4/15, 1/5/15, 4/5/15 & 5/5/15 in accordance with the standard sampling procedure (SSP) attached in the appendices.
	Sampling locations were set out using a hand held GPS unit (with an accuracy of ± 5 m). In- situ sampling locations were cleared for underground services by an external contractor prior to sampling as outlined in the SSP.
	The sample locations were drilled using the following equipment as shown on the borehole logs attached in the appendices:
	 Hydraulically operated drill rig equipped with spiral flight augers. Soil samples were obtained from a Standard Penetration Test (SPT) sampler or directly from the auger when conditions did not allow use of the SPT sampler; and Hand equipment in hard to access areas.
Sampling Collection and	Soil samples were collected from the fill and natural profiles based on field observations. The sampling depths are shown on the logs attached in the appendices.
Field QA/QC	Additional samples were obtained when relatively deep fill (>0.5m) was encountered. Samples were also obtained when there was a distinct change in lithology or based on the observations made during the investigation.
	During sampling, soil at selected depths was split into primary and duplicate samples for field QA/QC analysis.
	Samples were placed in glass jars with plastic caps and teflon seals with minimal headspace. Samples for asbestos analysis were placed in zip-lock plastic bags.

Aspect	Input				
	Sampling personnel used disposable nitrile gloves during sampling activities. The samples were labelled with the job number, sampling location, sampling depth and date in accordance with the SSP.				
Field PID Screening for VOCs	A portable Photoionisation Detector (PID) was used to screen the samples for the presence of VOCs and to assist with selection of samples for hydrocarbon analysis.				
	The sensitivity of the PID is dependent on the organic compound and varies for different mixtures of hydrocarbons. Some compounds give relatively high readings and some can be undetectable even though present in identical concentrations. The portable PID is best used semi-quantitatively to compare samples contaminated by the same hydrocarbon source.				
	The PID is calibrated before use by measurement of an isobutylene standard gas. All the PID measurements are quoted as parts per million (ppm) isobutylene equivalents. PID calibration records are attached in the appendices.				
	PID screening for VOCs was undertaken on soil samples using the soil sample headspace method. VOC data was obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases.				
Decontami- nation and	The decontamination procedure adopted during sampling is outlined in the SSP.				
Sample Preservation	Where applicable, the sampling equipment was decontaminated using a scrubbing brush and potable water and Decon 90 solution (phosphate free detergent) followed by rinsing with potable water. Rinsate samples were obtained during the decontamination process as part of the field QA/QC.				
	Soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with the SSP.				
	On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.				

5.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology is outlined in the table below:

Aspect	Input
Sampling Plan	Groundwater monitoring wells were installed in 2 selected boreholes (BH9 and BH31) spread across the site as shown on Figure 2. The drainage creek was also sampled.
	The monitoring well locations were chosen based on subsurface conditions encountered

Table 5-3: Groundwater Sampling Plan and Methodology
--

Aspect	Input			
	during the investigation and to target potential contamination sources where applicable.			
Exclusion Areas (Data Gaps)	Sampling was not undertaken in inaccessible areas of the site such as beneath existin buildings. These areas have been excluded from the investigation.			
Monitoring Well Installation Procedure	The monitoring well construction details are documented on the appropriate borehole logs attached in the appendices. The monitoring wells were installed to depths of approximately 5.5 to 6m below ground level. The installation depth was designed to make an assessment of shallow perched groundwater conditions.			
	The wells were constructed as follows:			
	• A 50mm diameter Class 18 PVC casing and machine slotted screen;			
	• A 2mm sand filter pack was used around the screen section for groundwater infiltration;			
	 A bentonite seal/plug was used on top of the slotted section to seal the wells; 			
	 A gatic cover was installed at the surface with a concrete plug to limit the inflow of surface water. 			
Monitoring Well Development	The monitoring wells were developed on 4/5/15 using a submersible electrical pump. A minimum of 3 well volumes was removed or the wells were pumped dry in slow recharging conditions.			
	The following parameters were monitored using calibrated field instruments (see SSP):			
	 Standing water level (SWL) using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter. 			
	The field monitoring records and calibration data are attached in the appendices.			
Groundwater Sampling	The monitoring wells were allowed to recharge for approximately 5 to 7 days after development. Groundwater samples were obtained on 11/5/15.			
	Prior to sampling, the monitoring wells were checked for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) using an inter-phase probe electronic dip meter.			
	The samples were obtained using a peristaltic pump. During sampling, the following parameters were monitored using calibrated field instruments (see SSP):			
	 Standing water level (SWL) using an electronic dip meter; and pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh) using a YSI Multi-probe water quality meter. 			
	Steady state conditions were considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.			

Aspect	Input			
	Groundwater samples were obtained directly from the single use PVC tubing and placed in the sample containers.			
	The use of low-flow sampling techniques (such as a micro-purge or peristaltic pump) generally provides for an increased confidence of accuracy, and in particular, improves the likelihood that the sample is representative of general aquifer conditions due to much lower aquifer disturbance during sampling.			
	Duplicate samples were obtained by alternate filling of sample containers. This technique was adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.			
	Groundwater removed from the wells during development and sampling was transported to EIS in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.			
	The field monitoring record and calibration data are attached in the appendices.			
Decontaminant and Sample Preservation	The decontamination procedure adopted during sampling is outlined in the SSP attached in the appendices.			
	During development, the pump was flushed between monitoring wells with potable water (single-use tubing was used for each well). Sampling was undertaken using a peristaltic pump. The pump tubing was discarded after each sampling event and replaced therefore no decontamination procedure was considered necessary.			
	The samples were preserved in accordance with water sampling requirements detailed in NEPM 2013 and placed in an insulated container with ice in accordance with the SSP.			
	On completion of the fieldwork, the samples were delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.			

5.4 Analytical Schedule

The analytical schedule is outlined in the following table:

PCC/CoPC	Fill Samples	Natural Soil Samples	Stockpile Samples	Groundwater Samples
Heavy Metals	34	12	3	3
TRH/BTEXN	34	11	3	3

Table 5-4: Analytical Schedule

PCC/CoPC	Fill Samples	Natural Soil	Stockpile Samples	Groundwater Samples
		Samples		
PAHs	34	11	3	3
OCPs/OPPs	23	7	3	Na
PCBs	23	7	3	Na
Asbestos	34	1	3	Na
pH/CEC/Clay Content (%)	4	Na	Na	Na
pH/EC/hardness	Na	Na	Na	3
TCLP Metals	7	Na	Na	Na
TCLP PAHs	2	Na	Na	Na
Asbestos in Fibre Cement Fragments (FCF)	1	Na	Na	Na

5.4.1 <u>Laboratory Analysis</u>

The samples were analysed by the NATA Accredited laboratory/s using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 5-5: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	127448, 127448-A 7 127766
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	6246

6 <u>SITE ASSESSMENT CRITERIA (SAC)</u>

The SAC adopted for the assessment is outlined in the table below. The SAC has been derived from the NEPM 2013 and other guidelines as applicable. The guideline values for individual contaminants are presented in the attached report tables.

Guideline	Applicability
Health Investigation Levels (HILs) (NEPM 2013)	The HIL-A criteria for 'residential with accessible soil' have been adopted for this assessment.
Health Screening Levels (HSLs) (NEPM 2013)	The HSL-A criteria for 'residential with accessible soil' have been adopted for this assessment.
Ecological Assessment Criteria (EAC)	The EAC criteria for 'urban residential and public open space (URPOS)' exposure setting have been adopted.
(NEPM 2013)	 The EILs for selected metals have been derived as follows: The ABC values for high traffic (25th percentiles) areas for old suburbs of NSW published in Olszowy et. al. (1995¹³) has been adopted for this assessment; and Selected fill samples obtained from the surficial profile (<2m) across the site were analysed for pH, CEC and clay content. The average pH, CEC and clay content values were used to calculate the ACL.
Asbestos in Soil	The 'presence/absence' of asbestos in soil has been adopted as the assessment criterion for the Preliminary Site Investigation (PSI).
Waste Classification (WC) Criteria	The criteria outlined in the NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014 ¹⁴) has been adopted to classify the material for off-site disposal.
Groundwater Investigation Levels (GILs)	 The NSW Department of Environment and Conservation (now EPA) Guidelines for the Assessment and Management of Groundwater Contamination (2007¹⁵) require an assessment of environmental values including: Aquatic Ecosystems:
	The closest receiving water body in the vicinity of the site is a drainage channel

Table 6-1: SAC Adopted for this Investigation

¹³ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission.

¹⁴ NSW EPA, (2014), *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

¹⁵ NSW DEC (2007), *Guidelines for the Assessment and Management of Groundwater Contamination* (referred to as Groundwater Guidelines 2011)

Guideline	Applicability
	located towards the centre of the site. This water body predominantly sustains a freshwater ecosystem. Hence the freshwater water trigger values presented in Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000 ¹⁶) have been adopted for the assessment (referred to as GIL-ANZECC-Fresh).
	The NSW EPA promotes the use of trigger values for the protection of 95% of aquatic ecosystems, except where the contaminants have the potential to bio-accumulate, in which case the 99% trigger values are recommended.
	The 95% trigger values have been adopted for this assessment. Where necessary, the low reliability trigger values are quoted.
	 Health Risk in Non-use Scenarios: Health risks in non-use scenarios are usually associated with the presence of vapours associated with volatile contaminants.
	The HSL A for 'residential with accessible soil' have been adopted for this investigation.
	3. <u>Buildings and Structures:</u> An assessment of the risk posed by contaminated groundwater towards built structures has not been undertaken for this assessment. In the event elevated levels of contaminants are present, this can be addressed in the Tier 1/2 Risk assessment.

¹⁶ ANZECC, (2000), Australian and New Zealand Guidelines for Fresh and Marine Water Quality. (referred to as ANZECC 2000)

7 INVESTIGATION RESULTS

7.1 <u>Subsurface Conditions</u>

A summary of the subsurface conditions encountered during the investigation is presented in the table below. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description (m in bgl)				
Pavement	Asphaltic Concrete (AC) pavement was encountered at the surface of BH4 only.				
Fill	Fill material was encountered at the surface or beneath the pavement in all boreholes and extended to depths of approximately 0.2 to 2.0m. BH5, BH18, BH22, BH23 and BH26 were terminated in the fill at a maximum depth of approximately 1.0m.				
	The fill typically comprised of: silty clay; silty sandy gravel; gravelly silty clay; silty clayey gravel; sandy clay; clayey sand and silty sand. The fill contained inclusions of: ash; slag; roots; root fibres; bricks; tiles; igneous, sandstone, shale and ironstone gravels.				
Natural Soil	Natural silty clay was encountered in the majority of the boreholes underlying the fill.				
Bedrock	Shale bedrock was encountered underlying the fill or natural silty clay in BH1 to BH3. BH9, BH31, BH32, BH35 and BH36.				
Groundwater	Groundwater seepage was encountered in BH9 and BH20 at depths of 2.5m and 0.5m during drilling. Groundwater seepage was not encountered in the remaining boreholes during drilling.				
	Groundwater monitoring wells were installed in BH9 and BH31. The SWL noted in these boreholes during sampling on 11/5/15 is outlined in the section below.				

7.2 Field Screening

A summary of the field screening results are presented in the table below.

Table 7-2: Summary of Field Screening

Aspect	Details (m in bgl)		
PID Screening of Soil Samples for VOCs	PID soil sample headspace readings are presented in attached report tables and the COC documents attached in the appendices. The results ranged from 0ppm to 94ppm equivalent isobutylene. These results indicate PID detectable VOCs. Samples with elevated PID readings were analysed for TRH and BTEXN.		
Groundwater Depth	Groundwater seepage was encountered in boreholes BH9 and BH20 during drilling at		

Aspect	Details (m in bgl)			
& Flow	depths of approximately 2.5 to 0.5m. The remaining boreholes were dry during and a short time after completion of drilling.			
	SWLs measured in the monitoring wells installed at the site ranged from 2.14 to 4.62m.			
	Based on the topography of the site we have assumed that groundwater would flow towards the drainage channel located in the centre of the site.			
Groundwater Field Parameters	 Field measurements recorded during sampling are as follows: pH ranged from 5.36 to 5.49; EC ranged from 951µS/cm to 805µS/cm; Eh ranged from 102.7mV to 126.0mV; and DO ranged from 3.7ppm to 3.0ppm. 			
LNAPLs petroleum hydrocarbons	Free phase LNAPLs were not detected using the interphase probe during groundw sampling.			

7.3 <u>Soil Laboratory Results</u>

The soil laboratory results are compared to the relevant SAC in the attached report tables. Statistical calculations undertaken on the results using ProUCL (version 5) are attached in the appendices. A summary of the results assessed against the SAC is presented below.

Table 7-3: Summary	of Soil Laboratory	/ Results
Tuble / 5. Jullinu		y nesures

Analyte	Results Compared to SAC
Heavy Metals	HILS:
	The lead result of 640mg/kg in the BH31 0-0.2m sample was above the HIL-A criteria of
	300mg/kg. All remaining heavy metal results were below the HIL-A criteria.
	Summary of Statistical Calculation:
	The result is below 250% of the SAC and inside the acceptance criteria outlined in Section
	4.1. The 95% UCL was calculated using the lead data from the fill soil samples. The 95% UCL
	for lead was 97.11mg/kg which is below the HIL-A criterion of 300mg/kg. The Standard
	Deviation (SD) was inside the acceptance criteria outlined in Section 4.1.
	<u>EILs:</u>
	All heavy metal results were below the EIL-UR&POS criteria.
	<u>WC:</u>
	The lead results of 120mg/kg, 160mg/kg, 130mg/kg, 180mg/kg, 640mg/kg, 120mg/kg and
	110mg/kg in the BH9 1.7-1.95m, BH25 0-0.15m, BH26 0-0.2m, BH27 0-0.3m, BH31 0-0.2m,

Analyte	Results Compared to SAC				
	BH35 0-0.2m and BH36 0-0.2m samples respectively exceeded the CT1 criteria. The nickel results of 100mg/kg and 78mg/kg in the BH3 0-0.1m and BH9 0-0.3m respectively were above the CT1 criteria. All remaining heavy metal results were less than the CT1 and SCC1 criteria. TCLP leachates were prepared from the above elevated samples and analysed for lead or nickel. The results were less than the TCLP1 criteria.				
TRH	HSLs: All TRH results were below the HSL-A criteria.				
	ESLs: The >C16-C34 (F3) result of 590mg/kg in the BH9 0-0.3m sample exceeded the ESL criteria of 300mg/kg. All remaining TRH results were below the ESL-URPOS criteria.				
	WC: All TRH results were less than the relevant CT1 and SCC1 criteria.				
BTEXN	HSLs: All BTEXN results were below the HSL-A criteria.				
	<u>ESLs:</u> All BTEXN results were below the ESL-URPOS criteria.				
	WC: All BTEX results were less than the relevant CT1 and SCC1 criteria.				
PAHs	HILS: The benzo(a)pyrene TEQ result of 13mg/kg in the BH5 0-0.3m sample was above the HIL-A criteria. All remaining PAH results were below the HIL-A criteria.				
	Summary of Statistical Calculation: The B(a)P TEQ result of 13mg/kg in the BH5 0-0.3m sample is above 250% of the SAC and outside the acceptance criteria outlined in Section 4.1. The 95% UCL was calculated using the B(a)P TEQ data from the fill soil samples. The 95% UCL for B(a)P TEQ was 1.68mg/kg which is below the HIL-A criterion of 3mg/kg. The Standard Deviation (SD) was inside the acceptance criteria outlined in section 4.1.				
	<u>HSLs:</u> All naphthalene results were below the HSL-A criteria.				
	ESLs: The benzo(a)pyrene results of 3.1mg/kg and 0.76mg/kg in the BH5 0-0.3m and BH34 0-0.2m was above the ESL-URPOS criteria of 0.7mg/kg. all remaining benzo(a)pyrene results were less than the ESL-URPOS criteria.				
	<u>EILS:</u>				

Analyte	Results Compared to SAC				
	All naphthalene results were below the EIL-URPOS criteria.				
	WC: The benzo(a)pyrene result of 9.1mg/kg in the BH5 0-0.3m sample exceeded the CT1 criteria. All remaining PAH results were less than the relevant CT1 and SCC1 criteria. TCLP leachates were prepared from the above elevated sample and analysed for PAHs. The results were less than the TCLP1 criteria.				
OCPs & OPPs	HILs: All OCP and OPP results were below the HIL-A criteria.				
	<u>EILs:</u> All DDT results were below the EIL-URPOS criteria.				
	WC: All OCP and OPP results were less than the relevant CT1 and SCC1 criteria.				
PCBs	HILs: All PCB results were below the HIL-A criterion.				
	WC: All PCB results were less than the SCC1 criterion.				
Asbestos	Asbestos was not detected in the soil samples analysed for the investigation. Asbestos fibres were detected in the material sample obtained from the ground surface and analysed for the investigation.				

7.4 Groundwater Laboratory Results

The groundwater laboratory results are presented in the attached report tables. A summary of the results assessed against the SAC is presented below.

Analyte	Results Compared to SAC GIL-ANZECC-Fresh: Elevated concentrations of individual metals were encountered above the GIL-ANZECC criteria as outlined below:			
Heavy Metals				
	Analyte	Sample	GIL	Concentration
	Analyte Copper	Sample MW9	GIL 1.4µg/L	Concentration 2µg/L (MW9)
		-	_	

Table 7-4: Summary of Groundwater Laboratory Results

Analyte	Results Compared to SAC			
	Zinc	MW9 MW31 Creek	8μg/L	58μg/L (MW9) 70μg/L (MW31) 10μg/L (Creek)
TRH & BTEXN	GIL-ANZECC-Fresh: All BTEXN results were be <u>HSLs:</u> All TRH and BTEXN result			
PAHs	GIL-ANZECC-Fresh: All PAH results were belo HSLs: All naphthalene results w			
Other Parameters	The results for pH, EC, TD pH ranged from 5.4 EC ranged from 430 Hardness ranged from	to 7;)μS/cm to 1,000μS/	cm; and	:

8 DATA QUALITY ASSESSMENT

As part of the data quality assessment the following data quality indicators (DQIs) were assessed: precision, accuracy, representativeness, completeness and comparability as outlined in the table below. Reference should be made to the appendices for an explanation of the individual DQI.

Table 8-1: Assessment of DQIs

Completeness	

Field Considerations:

- The investigation was designed to target the AEC identified at the site. A systematic sampling plan was adopted based on the AEC as outlined in the report;
- Samples were obtained from various depths based on the subsurface conditions encountered at the sampling locations. All samples were recorded on the borehole logs. All sampling points are shown on the attached Figure 2;
- The investigation was undertaken by trained staff in accordance with the SSP; and
- Documentation maintained during the field work is attached in the appendices where applicable.

Laboratory Considerations:

- Selected samples were analysed for a range of PCC/CoPC.
- All samples were analysed by NATA registered laboratory/s in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate analytical methods and PQLs were used by the laboratory;
- Appropriate sample preservation, handling, holding time and COC procedures were adopted for the investigation.

Comparability

Field Considerations:

- The investigation was undertaken by trained staff in accordance with the SSP;
- The climate conditions encountered during the field work were noted on the site description record maintained in the job file; and
- Consistency was maintained during sampling in accordance with the SSP.

Laboratory Considerations:

- All samples were analysed in accordance with the analytical methods outlined in NEPM 2013;
- Appropriate PQLs were used by the laboratory/s for all analysis (other than those outlined above);
- All primary, intra-laboratory duplicates and other QA/QC samples were analysed by the same laboratory; and
- The same units were used by the laboratory/s for all of the analysis.

Representativeness

Field Considerations:

• The investigation was designed to obtain appropriate media encountered during the field work as

outlined in the SAQP (proposal). Dust and/or vapour sampling was outside the scope of this assessment; and

• All media based on the subsurface conditions encountered during the field work was sampled.

Laboratory Considerations:

• All samples were analysed in accordance with the SAQP.

Precision

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- Analysis of field QA/QC samples including inter and intra-laboratory duplicates, trip blanks (TB), field rinsate (FR) and tip spikes (TS) as outlined below;
- The field QA/QC frequency adopted for the investigation is outlined below;
- Calculation of the Relative Percentage Difference (RPD) from the primary and duplicate results (the RPD calculation equation is outlined in the attached appendices);
- Assessment of RPD results against the acceptance criteria outlined in Section 5.1.

Intra-laboratory RPD Results:

Soil Samples at a frequency of 11% of the primary samples:

- Dup 2 is a soil duplicate of primary sample BH24 0-0.3m
- Dup 3 is a soil duplicate of primary sample BH35 0-0.2m

Groundwater Samples at a frequency of 33% of the primary samples:

• Dup A is a groundwater duplicate of primary sample MW9

The intra-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

The RPD values for a range of individual heavy metals were outside the acceptance criteria. Values outside the acceptable limits have been attributed to sample heterogeneity and the difficulties associated with obtaining homogenous duplicate samples of heterogenous matrices.

Inter-laboratory RPD Results:

Soil Samples at a frequency of 11% of the primary samples:

- Dup 1 is a soil duplicate of primary sample BH34 0-0.2m
- Dup 5 is a soil duplicate of primary sample BH14 0-0.2m

The inter-laboratory results are presented in the attached report tables. The results indicated that field precision was acceptable.

The RPD value for lead in the Dup 1 sample was significantly elevated. As a result the sample was re-analysed. The second RPD calculation based on the re analysis was acceptable. The high lead result in the Dup 1 sample was considered an anomaly and was not representative of the actual lead contamination in the sample.

Trip Spike (TS):

One groundwater TS were analysed for BTEX at a frequency of one spike per batch of volatiles. The results are presented in the attached report tables.

The results ranged from 97% to 105% and indicated that field preservation methods were appropriate.

Field Rinsate (FR):

Four FR samples obtained from the field equipment decontamination process were analysed for BTEX. The results are presented in the attached report tables.

All results were below the PQL which indicates that cross-contamination artefacts associated with sampling equipment was not present.

Trip Blank (TB):

One soil TB were analysed for BTEX at a frequency of one blank per batch of volatiles. The results are presented in the attached report tables.

The results were all less than the PQLs.

Accuracy

Field Considerations:

• The investigation was undertaken in accordance with the SSP.

Laboratory Considerations:

- The analytical quality assessment adopted by the laboratory was in accordance with the NATA and NEPM 2013 requirements as outlined in the analytical reports;
- A review of the report/s indicates the following comments noted by the laboratory/s:

<u>Envirolab Report 6246</u> – The laboratory RPD acceptance criteria was exceeded in one sample for lead. The duplicate is outside the acceptable %RPD, reanalysis indicates possible sample heterogeneity for Dup 1.

9 WASTE CLASSIFICATION OF SOIL FOR OFF-SITE DISPOSAL

The waste classification of soil for off-site disposal is summarised in the following table:

Site Extent / Material Type	Classification	Disposal Option
Fill material over the site	General Solid Waste (non- putrescible) (GSW)	A NSW EPA landfill licensed to receive the waste stream. The landfill should be contacted to obtain the required approvals prior to commencement of excavation.
Natural silty clay soil and shale bedrock	Virgin excavated natural material (VENM)	VENM is considered suitable for re-use on-site, or alternatively, the information included in this report may be used to assess whether the material is suitable for beneficial reuse at another site as fill material. Alternatively, the natural material can be disposed of as VENM to a facility licensed by the NSW EPA to receive the waste stream.

Table 9-1: Waste Classification

10 TIER 1 RISK ASSESSMENT AND REVIEW OF CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

An elevated concentration of lead was identified in the BH31 0-0.2m sample above the HIL-A criteria. However, the statistical analysis of the fill soil lead results met the SAC and therefore the risk to the identified human receptors was considered to be very low.

Asbestos fibres were not detected in any of the soil samples analysed for the ESA. Asbestos fibres were detected in a FCF sampled from the ground surface in the North West corner of the site (Sample Ref: S1)

The assessment has identified the following contamination issues at the site:

Contaminant of Primary Concern (CoPC)	Receptor and Exposure Pathway	Discussion and Risk Rating
B(a)P TEQ	<u>Human Receptors:</u> Dermal Contact, ingestion and inhalation via dust	The CoPC were above the SAC adopted for this investigation and may pose a risk to site receptors. EIS are of the opinion that the risk posed to human receptors is low but will require remediation and/or management. Only one B(a)P TEQ result was elevated therefore this may represent a minor hotspot.
Asbestos in FCF	<u>Human Receptors:</u> Inhalation of airborne asbestos fibres	The investigation encountered FCF containing asbestos. During sampling the FCF were assessed to be in good conditions and could not be broken by hand pressure. Hence the material was assessed to be 'non-friable' based on field information. EIS are of the opinion that the risk posed to human receptors is low to moderate and will require remediation and/or management.

Table 10-1: Tier 1 Risk Assessment and Review of CSM

Contaminant of	Receptor and Exposure	Discussion and Risk Rating
Primary	Pathway	
Concern		
(CoPC)		
TRH >C16-C34	Environmental	The CoPC were above the EAC adopted for this investigation
(F3) and B(a)P	Receptors:	and may pose a risk to environmental receptors.
	Direct exposure to plants	
	and animals	Environmental receptors on-site include proposed landscaped
		areas between buildings. Off-site receptors include surface
		water runoff into drainage channel.
		EIS are of the opinion that the risk posed to on-site
		environmental receptors is low. Only two of the forty five
		samples exceeded the ecological criteria for B(a)P and only one
		sample exceeded the ecological criteria for TRH >C16-C34 (F3).
		There were no obvious impacts on site flora.

10.1 Source and Extent of Contamination

10.1.1 <u>Sources</u>

The source of the PAHs and heavy metals including lead in the fill samples is considered to be associated with the ash and slag inclusions encountered in the fill matrix. The natural soil samples analysed below the fill profile were not impacted by the contaminants.

The demolition of the former house (number 4 Beechworth) in the north western section of the site could have resulted in remnant FCF on the ground surface.

10.1.2 Known Extent

Based on a review of the field logs and the laboratory data, EIS are of the opinion that the soil contamination is confined to the fill material at the site. The fill ranges in depth from approximately 0.2m to 2m bgl as shown on the attached Figure 2.

A B(a)P TEQ hot spot has been identified around the surface of BH5. Further investigation around this location should be undertaken to obtain a better understanding of the extent of the contamination and to better assess the hotspot.

10.1.3 <u>Unknown Extent</u>

Sampling was not undertaken beneath the existing buildings and densely overgrown vegetated areas. The extent of contamination beneath the buildings is currently unknown.

10.1.4 Hazardous Building Materials in Existing Buildings

There is a possibility of the presence of hazardous building materials in the existing buildings at the site. This is considered to pose a relatively low risk to the receptors provided that the demolition works are undertaken in accordance with the relevant codes and standards. EIS have undertaken a Hazardous Building Material Assessment (HAZMAT) of the current buildings on the site.

10.1.5 <u>Groundwater</u>

EIS are of the opinion that the elevated concentrations of heavy metals (copper and zinc) detected in the groundwater samples are typical of urban/regional groundwater conditions and are most likely associated leaking water infrastructure. No elevated copper or zinc soil concentrations above the soil HIL SAC were detected during the soil sampling program.

EIS note that the groundwater pH was outside of the ANZECC 2000 range. Again this has been attributed to regional issues.

Based on the results of the assessment, EIS are of the opinion that the groundwater PCC pose a low risk to the receptors identified in the CSM and groundwater remediation is not required.

Dewatering will be required as part of the basement construction. Dewatering and/or groundwater disposal approvals should be sought from the relevant authorities. Treatment of the groundwater may be required. A suitably qualified dewatering contactor should be appointed to provide any recommendations for treatment of the groundwater for dewatering.

10.2 Fate and Transport of Contaminants

The potential fate and transport of PCC/CoPC identified at the site is summarised in the following table:

PCC/CoPC	Fate and Transport					
Non-volatile contaminants including: metals, heavy fraction PAHs and asbestos	With the exception of asbestos, non-volatile contaminants are predominantly confined to the soil and groundwater medium. The mobility of these contaminants varies depending on: the nature and type of contaminant present (e.g. leachability, viscosity etc.); soil type/porosity; surface water infiltration; groundwater levels; and the rate of groundwater movement.					
	Presence of Ash and Slag Non-volatile contaminants associated with ash and slag waste (some heavy metals, heavy fraction PAHs, and sometimes heavy fraction TPHs) are bound within a relatively insoluble matrix. Slag and ash is usually formed as a by-product of combustion at high temperatures which 'locks in' the contaminants within the matrix.					

Table 10-2: Fate and Transport of PCC/CoPC

PCC/CoPC	Fate and Transport
	Presence of Asbestos
	The potential transport of asbestos fibres is associated with the disturbance of asbestos contaminated soils and release of fibres into the atmosphere. This is likely to occur during excavation works.
	A number of studies have found that soils effectively filter out asbestos fibres and retain them within the soil matrix. The studies concluded that there is no significant migration of asbestos fibres, either through soil or groundwater.
	Site Conditions
	Surface water has the potential to infiltrate into the subsurface at the subject site via garden beds, grassed areas, unlined water retention facilities etc. Surface water infiltration could increase the migration potential of certain contaminants. Excess surface water has the potential to run-off into the
	drainage channel located to the centre of the site.

10.3 Data Gaps

The assessment has identified the following data gaps:

- Areas beneath the existing buildings have not been included in the assessment;
- Areas of dense vegetation prevented the systematic sampling pattern. Ten of the proposed sampling locations have not been assessed; and
- Dense vegetation prevented an inspection of the majority of the ground surface at the site for FCF.

11 <u>CONCLUSION</u>

EIS consider that the report objectives outlined in **Section 1.2** have been addressed.

Based on the scope of works undertaken, EIS are of the opinion that the CoPC identified at the site pose a risk to the receptors.

EIS consider that the site can be made suitable for the proposed development provided that the following recommendations are implemented to address the data gaps and to minimise/better manage/characterise the risks:

- 1. Address the data gaps identified in **Section 10.3** as part of an additional ESA;
- 2. Prepare a Remediation Action Plan (RAP) to outline remedial measures for the site;
- 3. Prepare a Validation Assessment (VA) report on completion of remediation;

In the event unexpected conditions are encountered during development work or between sampling locations that may pose a contamination risk, all works should stop and an environmental consultant should be engaged to inspect the site and address the issue.

11.1 <u>Regulatory Requirement</u>

The regulatory requirements applicable for the site are outlined in the following table:

Guideline	Applicability
Duty to Report Contamination 2009 ¹⁷	The requirement to notify the NSW EPA regarding site contamination should be assessed once the results of the additional investigation work have been reviewed and a remedial strategy (if necessary) has been selected. Please note that in the event the recommendations for additional work and remediation/management are not undertaken, there may be justification to notify the EPA. EIS can be contacted for further advice regarding notification.
POEO Act 1997	Section 143 of the POEO Act 1997 states that if waste is transported to a place that cannot lawfully be used as a waste facility for that waste, then the transporter and owner of the waste are each guilty of an offence. The transporter and owner of the waste have a duty to ensure that the waste is disposed of in an appropriate manner.

Table 11-1: Regulatory Requirement

¹⁷ NSW Department of Environment and Climate Change, (2009), *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997.* (referred to as Duty to Report Contamination 2009)

Guideline	Applicability						
Work Health and Safety Code of Practice 2011 ¹⁸	Sites contaminated with asbestos become a 'workplace' when work is carried out there and require a register and asbestos management plan.						
Dewatering Consent	In the event groundwater is intercepted during excavation works, dewatering may be required. Council, NSW Office of Water (NOW) and other relevant approvals (from discharge authorities like Sydney Water etc.) should be obtained prior to the commencement of dewatering.						

¹⁸ WorkCover NSW, (2011), WHS Regulation: Code of Practice – How to Manage and Control Asbestos in the Workplace.

12 LIMITATIONS

The report limitations are outlined below:

- EIS accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the EIS proposal; and terms of contract between EIS and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, EIS has not undertaken any verification process, except where specifically stated in the report;
- EIS has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- EIS accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- EIS have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. EIS should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

LIST OF IN-TEXT TABLES

Table 1-1: Guidelines	2
Table 2-1: Site Identification	5
Table 2-2: Summary of Relevant Services	7
Table 4-1: CSM	9
Table 5-1: DQOs – Seven Steps	11
Table 5-2: Soil Sampling Plan and Methodology	13
Table 5-3: Groundwater Sampling Plan and Methodology	15
Table 5-4: Analytical Schedule	17
Table 5-5: Laboratory Details	18
Table 6-1: SAC Adopted for this Investigation	19
Table 7-1: Summary of Subsurface Conditions	21
Table 7-2: Summary of Field Screening	21
Table 7-3: Summary of Soil Laboratory Results	22
Table 7-4: Summary of Groundwater Laboratory Results	24
Table 8-1: Assessment of DQIs	26
Table 9-1: Waste Classification	29
Table 10-1: Tier 1 Risk Assessment and Review of CSM	30
Table 10-2: Fate and Transport of PCC/CoPC	32
Table 11-1: Regulatory Requirement	34

IMPORTANT INFORMATION ABOUT THIS REPORT

These notes have been prepared by EIS to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the EIS proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

EIS/J&K will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the assessment. If the subject site is sold, ownership of the assessment report should be transferred by EIS to the new site owners who will be informed of the conditions and limitations under which the assessment was undertaken. No person should apply an assessment for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an assessment report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site assessments identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Assessment Limitations

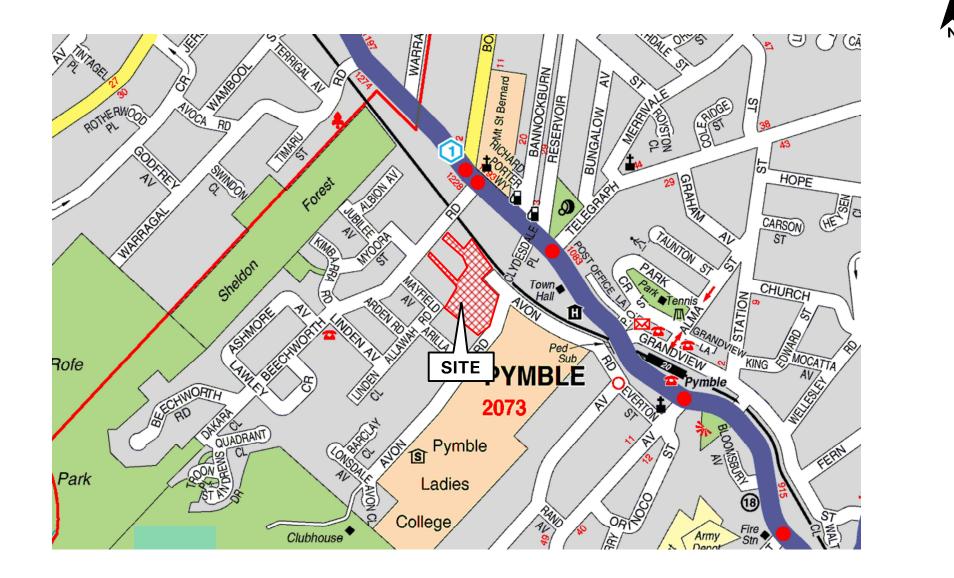
Although information provided by a site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

Misinterpretation of Site Assessments by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an assessment report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Assessment Report

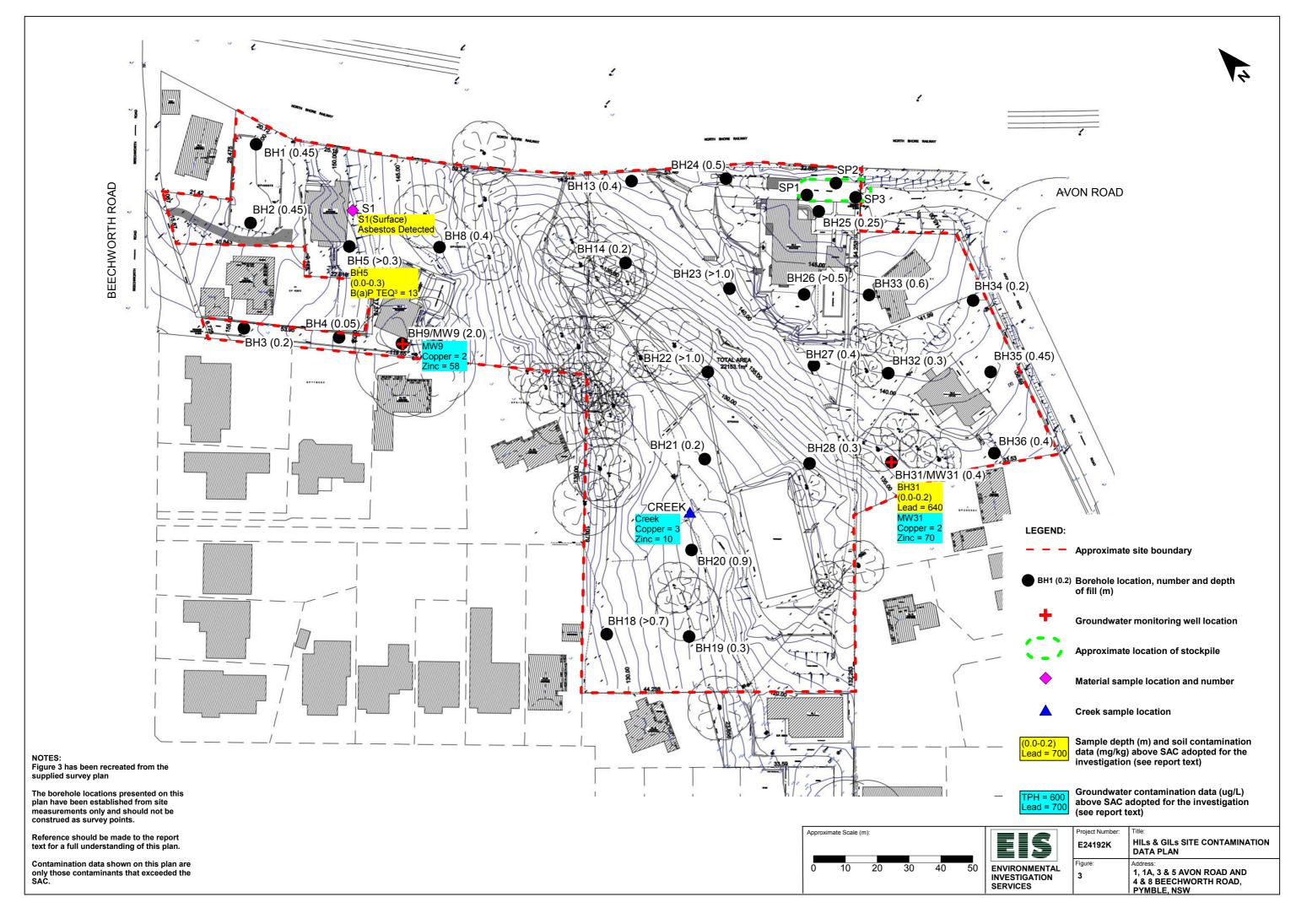
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the assessment. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

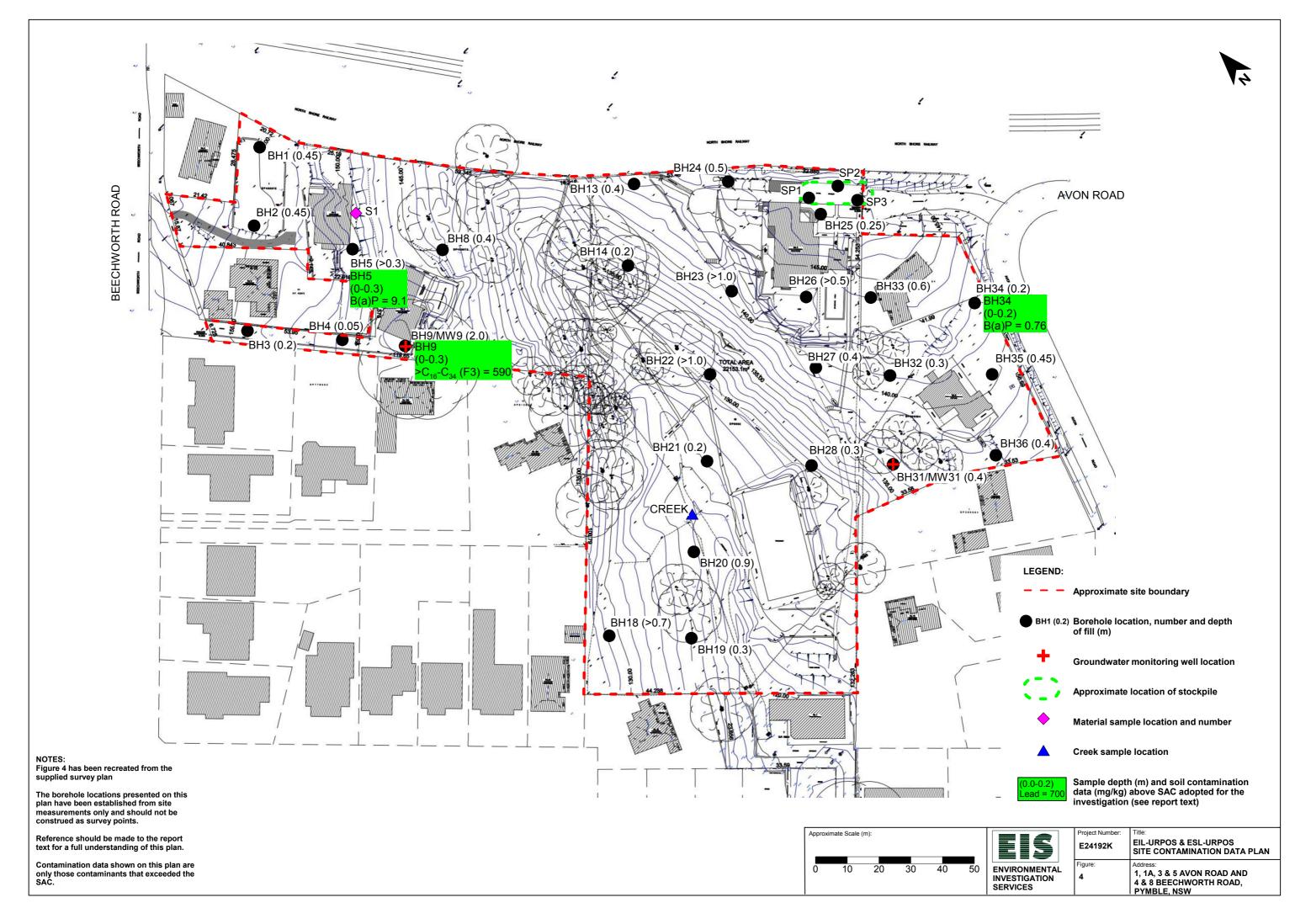

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.

Read Responsibility Clauses Closely

Because an environmental site assessment is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

REPORT FIGURES


NOTES: Figure has been recreated from UBD on disc (version 7.1) and http://maps.six.nsw.gov.au/.


Figure is not to scale. UBD Map ref: 174 F1, F2 & G2

Reference should be made to the report text for a full understanding of this plan.

EIS	Project Number: E24192K	Title: SITE LOCATION PLAN
ENVIRONMENTAL INVESTIGATION SERVICES	Figure: 1	Address: 1, 1A, 3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW

LABORATORY SUMMARY TABLES

										All d	ata in mg/k	g unless sta	ted otherw	vise								
						HEAVY N	VETALS				PA	AHs			ORGANOCHL	ORINE PESTI	CIDES (OCPs)			OP PESTICIDES (OPPs)		Γ
			Arsenic	Cadmium	Chromium VI ²	Copper	Lead	Mercury	Nickel	Zinc	Total PAHs	B(a)P TEQ ³	HCB	Endosulfan	Methoxychlor	Aldrin & Dieldrin	Chlordane	DDT, DDD & DDE	Heptachlor	Chlorpyrifos	TOTAL PCBs	
PQL - Envirola			4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	╞
	nt Criteria (SA	C) ¹	100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Ľ
Sample Reference	Sample Depth	Sample Description																				
BH1	0-0.2	Fill: silty clay	6	LPQL	10	13	28	LPQL	5	25	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH2 BH2	0-0.2	Fill: silty clay Shale	4 LPQL	LPQL LPQL	10 6	15 31	54 24	LPQL LPQL	5	58 26	0.86 LPQL	LPQL	LPQL LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	ł
BH3	0-0.1	Fill: silty sandy gravel	LPQL	0.4	57	33	15	LPQL	100	54	0.12	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	F
BH4	0.05-0.15	Silty Clay	5	LPQL	13	32	21	LPQL	7	22	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	İ
BH5	0-0.3	Fill: gravelly silty clay	5	LPQL	10	41	38	LPQL	10	60	79	13	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
BH8	0-0.3	Fill: silty clay	7	LPQL	16	23	48	LPQL	9	48	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH8	0.5-0.8	Silty Clay	6	LPQL	16	20	25	LPQL	7	33	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Ł
BH9	0-0.3	Fill: silty clayey gravel	LPQL	0.5	65	30	23	LPQL	78	54	1.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	╞
вн9 вн9	0.5-0.75	Fill: silty clay Fill: silty clay	LPQL 8	LPQL 0.4	11 14	33 37	64 120	LPQL LPQL	7 8	60 130	4.7 7.6	0.6	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	ł
BH13	0-0.3	Fill: silty clay	6	0.4	14	24	52	LPQL	6	47	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	t
BH14	0-0.2	Fill: silty clay	8	LPQL	15	66	52	0.1	6	53	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Ĺ
BH18	0-0.1	Fill: silty clay	7	LPQL	14	22	51	0.1	8	80	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
BH18	0.3-0.6	Fill: silty clay	9	LPQL	15	28	22	LPQL	9	51	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	
BH19	0-0.2	Fill: silty clay	7	LPQL	14	14	27	LPQL	8	57	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH20	0-0.2	Fill: silty clay	28	0.4	16	25	38	LPQL	10	68	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH20	0.3-0.5	Fill: silty clay	9	LPQL	15	22	21	LPQL	9	34	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	╞
BH21 BH21	0-0.2	Fill: silty clay	11 6	0.4 LPQL	14 15	22 13	59 19	0.1 LPQL	15 7	73 20	0.05 LPQL	LPQL	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	┢
BH21 BH22	0-0.3	Silty Clay Fill: silty clay	5	LPQL	15	20	38	LPQL	11	46	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	ł
BH22	0.5-0.7	Fill: silty clay	7	LPQL	10	14	15	LPQL	5	25	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	t
BH23	0-0.3	Fill: silty clay	5	LPQL	12	21	88	LPQL	6	64	0.28	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Ĺ
BH23	0.6-0.9	Fill: silty clay	5	LPQL	12	28	46	LPQL	4	38	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	
BH24	0-0.3	Fill: silty clay	5	LPQL	11	21	57	LPQL	6	71	0.28	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH24	0.5-0.6	Silty Clay	5	LPQL	7	22	23	LPQL	2	17	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	-
BH25	0-0.15	Fill: silty sand	LPQL	0.5	44	12	160 46	1.1	3	55	0.31	LPQL	LPQL	LPQL	LPQL	2.5	LPQL	0.5	LPQL	LPQL	LPQL	┢
BH25 BH26	0.15-0.25	Fill: silty sandy gravel Fill: sandy clay	6	LPQL LPQL	28 33	16 20	130	0.3	4	29 49	1.3 LPQL	LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	ł
BH26	0.2-0.5	Fill: silty clay	5	LPQL	17	23	63	LPQL	5	33	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	t
BH27	0-0.3	Fill: silty clay	7	0.6	19	65	180	0.1	7	180	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	
BH27	0.5-0.7	Silty Clay	7	LPQL	14	34	28	LPQL	2	15	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH28	0-0.2	Fill: silty clay	6	0.4	13	17	26	LPQL	7	32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	L
BH28	0.3-0.5	Silty Clay	6	LPQL	15	16	17	LPQL	8	18	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	-
BH31	0-0.2	Fill: silty clay	10 NA	0.7	19	69	640	0.2	9	380	0.31	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	┢
BH31 BH32	0.5-0.8	Silty Clay Fill: silty clay	6 NA	NA LPQL	NA 13	NA 25	19 79	NA LPQL	NA 7	NA 60	NA 1.8	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	ł
BH33	0-0.2	Fill: silty sand	7	0.6	27	120	50	0.2	14	190	2.4	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	t
BH33	0.3-0.5	Fill: silty clay	5	LPQL	15	30	31	LPQL	6	33	0.6	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	
BH33	0.6-0.9	Silty Clay	5	LPQL	15	33	22	LPQL	7	21	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	L
BH33	1-1.2	Silty Clay	6	LPQL	15	37	26	LPQL	5	22	LPQL	LPQL	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ł
BH34	0-0.2	Fill: clayey sand	4	LPQL	13	24	61	LPQL	5	50	8	1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	╞
BH34 BH35	0.3-0.5	Silty Clay Fill: silty clay	11 5	LPQL 0.4	12 16	46 25	26 120	LPQL	3	16 140	LPQL 6.8	LPQL 0.8	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	╞
внз5 ВН36	0-0.2	Fill: silty clay Fill: gravelly silty clay	6	U.4 LPQL	16	32	120	LPQL	3	140 55	0.1	U.8 LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	ł
BH36	0.5-0.7	Shale	8	LPQL	6	32	16	LPQL	3	14	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	t
SP1	-	Stockpiled Soil	LPQL	LPQL	8	7	42	LPQL	2	42	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.3	LPQL	0.5	LPQL	LPQL	Ĺ
SP2	-	Stockpiled Soil	LPQL	LPQL	8	6	39	LPQL	1	35	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.2	LPQL	0.2	LPQL	LPQL	
SP3	-	Stockpiled Soil	LPQL	LPQL	7	4	8	LPQL	2	14	LPQL	LPQL	LPQL	LPQL	LPQL	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	L
51 Total Numb	- er of Samples	Material	NA 48	NA 48	NA 48	NA 48	NA 49	NA 48	NA 48	NA 48	NA 48	NA 48	NA 37	NA 37	NA 37	NA 37	NA 37	NA 37	NA 37	NA 37	NA 37	┡
Maximum V			28	48	65	120	640	48	100	380	79	13	LPQL	LPQL	LPQL	2.5	0.3	0.5	0.5	LPQL	LPQL	t
6 · ·	istical Arrely 1	on fill formel																			1	T
	istical Analysis Fill Samples ⁴	on Fill Samples	NC	NC	NC	NC	34	NC	NC	NC	NC	34	NC	NC	NC	NC	NC	NC	NC	NC	NC	┢
Mean Value			NC	NC	NC	NC	78	NC	NC	NC	NC	0.91	NC	NC	NC	NC	NC	NC	NC	NC	NC	ſ
Standard De			NC	NC	NC	NC	107.4	NC	NC	NC	NC	2.1	NC	NC	NC	NC	NC	NC	NC	NC	NC	
% UCL ⁴			NC	NC	NC	NC	95	NC	NC	NC	NC	95	NC	NC	NC	NC	NC	NC	NC	NC	NC	L
UCL Value ⁴			NC	NC	NC	NC	97.11	NC	NC	NC	NC	1.647	NC	NC	NC	NC	NC	NC	NC	NC	NC	1

VALUE

Explanation: 1 - Site Assessment Criteria (SAC): NEPM 2013, HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools' 2 - The results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis. 3 - B(a)P TEQ - Benzo(a)pyrene Toxicity Equivalence Quotient has been calculated based on 8 carcinogenic PAHs and their Toxic Equivalence Factors (TEFs) outlined in NEPM 2013 4 - Statistical calculation undertaken using ProUCL version 5.0 (USEPA). Statistical calculation has only been undertaken using data from fill samples

Standard deviation exceeds data assessment criteria VALUE

Concentration above the SAC

Abbreviations: PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL OPP: Organophosphorus Pesticides OCP: Organochlorine Pesticides PCBs: Polychlorinated Biphenyls

UCL: Upper Level Confidence Limit on Mean Value HLL: Health Investigation Levels NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria NEPM: National Environmental Protection Measure

	ASBESTOS FIBRES
	100
	Detected/Not Detected
	Not Detected
	Not Detected
	NA
	Not Detected
	Not Detected
	Not Detected Not Detected
	NA
	Not Detected
	NA Not Detected
	Not Detected
	Not Detected
	Not Detected
	Not Detected
	NA
	Not Detected
	Not Detected NA
	Not Detected
	NA
	Not Detected
	NA
	Not Detected
	Not Detected
	Not Detected
	NA
	NA Not Detected
	NA
	Not Detected
	Not Detected
	NA
	Not Detected
	Not Detected
	Not Detected Detected
ļ	39
	NC
J	
	NC
	NC
	NC
	NC
	NC NC

						TABLE B RATORY RESULTS Co a in mg/kg unless sta		5				
					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID ²
PQL - Envirol	ab Services				25	50	0.2	0.5	1	3	1	
HSL Land Use	e Category ¹						RESIDEN	ITIAL WITH ACCES	SIBLE SOIL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH2	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH2	0.5-0.8	Shale	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
внз	0-0.1	Fill: silty sandy gravel	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH4	0.05-0.15	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
вн5	0-0.3	Fill: gravelly silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH8	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
вня	0.5-0.8	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH9	0-0.3	Fill: silty clayey gravel	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH9	0.5-0.75	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH9	1.7-1.95	Fill: silty clay	1m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH13	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH14	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH18	0-0.1	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH18	0.3-0.6	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH19	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	1	0
BH20	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH20	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH21	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH21	0.3-0.5	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH22	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH22	0.5-0.7	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH23	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH23	0.6-0.9	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH24	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH24	0.5-0.6	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH25	0-0.15	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH25	0.15-0.25	Fill: silty sandy gravel	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH26	0-0.2	Fill: sandy clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH26	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH27	0-0.3	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH27	0.5-0.7	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH28	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	4.3
BH28	0.3-0.5	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	94
BH31	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH32	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	1.1
внзз	0-0.2	Fill: silty sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	9.1
внзз	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	LPQL	55	LPQL	LPQL	LPQL	LPQL	LPQL	20.3
BH33	0.6-0.9	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	2.8
BH33	1-1.2	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	40.8
BH34	0-0.2	Fill: clayey sand	0m to < 1m	Sand	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH34	0.3-0.5	Silty Clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH35	0-0.2	Fill: silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH36	0-0.2	Fill: gravelly silty clay	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
BH36	0.5-0.7	Shale	0m to < 1m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
Total No. 1	an af 6				45	45	45	45	45	45		45
Maximum V	er of Sample: /alue	•			45 LPQL	45 55	45 LPQL	45 LPQL	45 LPQL	45 LPQL	45 1	45 94

Explanation: 1 - Site Assessment Criteria (SAC): NEPM 2013 2 - Field PID values obtained during the investigation

Concentration above the SAC VALUE The guideline corresponding to the elevated value is highlighted in grey in the Site Assessment Criteria Table below

 Abbreviations:
 VC: Vpper Level Confidence Limit on Mean Value
 NC: Not Calculated
 PQL: Practical Quantitation Limit

 USLS: Health Screening Levels
 NL: Not Limiting
 LPQL: Less than PQL

 NA: Not Analysed
 SAC: Site Assessment Criteria
 NEPM: National Environmental Protection Measure

SITE ASSESSMENT CRITERIA

					C ₆ -C ₁₀ (F1)	>C110-C16 (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirola	b Services				25	50	0.2	0.5	1	3	1
HSL Land Use	Category ¹						RESIDEN	TIAL WITH ACCESS	IBLE SOIL		
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category							
BH1	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH2	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH2	0.5-0.8	Shale	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH3	0-0.1	Fill: silty sandy gravel	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH4	0.05-0.15	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH5	0-0.3	Fill: gravelly silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH8	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH8	0.5-0.8	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH9	0-0.3	Fill: silty clayey gravel	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH9	0.5-0.75	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH9	1.7-1.95	Fill: silty clay	1m to <2m	Clay	90	NL	1	NL	NL	310	NL
BH13	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH14	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5

DUTO	0-0.1	Fill, Silly Clay	01110 < 111	Clay	30	200	0.7	460	INL	110	3
BH18	0.3-0.6	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH19	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH20	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH20	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH21	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH21	0.3-0.5	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH22	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH22	0.5-0.7	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH23	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH23	0.6-0.9	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH24	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH24	0.5-0.6	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH25	0-0.15	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH25	0.15-0.25	Fill: silty sandy gravel	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH26	0-0.2	Fill: sandy clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH26	0.2-0.5	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH27	0-0.3	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH27	0.5-0.7	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH28	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH28	0.3-0.5	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH31	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH32	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH33	0-0.2	Fill: silty sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH33	0.3-0.5	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH33	0.6-0.9	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH33	1-1.2	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH34	0-0.2	Fill: clayey sand	0m to < 1m	Sand	45	110	0.5	160	55	40	3
BH34	0.3-0.5	Silty Clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH35	0-0.2	Fill: silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH36	0-0.2	Fill: gravelly silty clay	0m to < 1m	Clay	50	280	0.7	480	NL	110	5
BH36	0.5-0.7	Shale	0m to < 1m	Clay	50	280	0.7	480	NL	110	5

										so	DIL LABORAT		TS COMPARED		SSIFICATION GUIDEL	.INES (2014)											
													uata in mg/kg	unless stated o													
			Arsenic	Cadmium	Chromium		Lead	Mercury	Nickel	Zinc	P/ Total	AHs B(a)P	Total	-	PESTICIDES Total Moderately	Total	Total PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	TRH C ₁₅ -C ₂₈	C ₂₉ -C ₃₆	Total	Benzene	BTEX CON Toluene	Ethyl	Total	ASBESTOS FIBRES
											PAHs		Endosulfans		Harmful ²	Scheduled ³						C ₁₀ -C ₃₆			benzene	Xylenes	
PQL - Envirolat General Solid V			4	0.4	1 100	1 NSL	1 100	0.1	1 40	1 NSL	- 200	0.05	0.1	0.1	0.1 250	0.1 <50	0.1 <50	25 650	50	100 NSL	100	250 10,000	0.2	0.5 288	1 600	3	100
General Solid V			500	100	1900	NSL	1500	50	1050	NSL	200	10	108	7.5	250	<50	<50	650		NSL		10,000	18	518	1,080	1,800	-
Restricted Soli	d Waste CT2 1		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	<50	<50	2600		NSL		40,000	40	1,152	2,400	4,000	-
Restricted Solid	d Waste SCC2	1	2000	400	7600	NSL	6000	200	4200	NSL	800	23	432	30	1000	<50	<50	2600		NSL		40,000	72	2,073	4,320	7,200	-
Sample Reference	Sample Depth	Sample Description																									
BH1	0-0.2	Fill: silty clay	6	LPQL	10	13	28	LPQL	5	25	0.07	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH2	0-0.2	Fill: silty clay	4	LPQL	10	15	54	LPQL	5	58	0.86	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.5-0.8	Shale	LPQL	LPQL	6	31	24	LPQL	5	26	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.1	Fill: silty sandy gravel	LPQL	0.4	57	33	15	LPQL	100	54	0.12	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	320	320	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.05-0.15	Silty Clay Fill: gravelly silty clay	5	LPQL	13 10	32	21 38	LPQL	7	22 60	LPQL 79	LPQL 9.1	LPQL LPQL	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL	LPQL 240	LPQL 200	LPQL 440	LPQL LPQL	LPQL	LPQL	LPQL	Not Detected Not Detected
	0-0.3	Fill: silty clay	7	LPQL	10	23	48	LPQL	9	48	0.06	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.5-0.8	Silty Clay	6	LPQL	16	20	25	LPQL	7	33	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.3	Fill: silty clayey gravel	LPQL	0.5	65	30	23	LPQL	78	54	1.1	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	120	680	800	LPQL	LPQL	LPQL	LPQL	Not Detected
BH9	0.5-0.75	Fill: silty clay	LPQL	LPQL	11	33	64	LPQL	7	60	4.7	0.4	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	1.7-1.95	Fill: silty clay	8	0.4	14	37	120	LPQL	8	130	7.6	0.67	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.3	Fill: silty clay	6	0.5	18	24	52	LPQL	6	47	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: silty clay	8	LPQL	15	66	52	0.1	6	53	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.1	Fill: silty clay Fill: silty clay	9	LPQL	14	22	51 22	0.1 LPQL	9	80 51	LPQL LPQL	LPQL	LPQL NA	LPQL NA	LPQL	LPQL NA	LPQL NA	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL LPQL	LPQL LPQL	Not Detected Not Detected
	0-0.2	Fill: silty clay	7	LPQL	14	14	27	LPQL	8	57	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: silty clay	28	0.4	16	25	38	LPQL	10	68	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH20	0.3-0.5	Fill: silty clay	9	LPQL	15	22	21	LPQL	9	34	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH21	0-0.2	Fill: silty clay	11	0.4	14	22	59	0.1	15	73	0.05	0.05	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.3-0.5	Silty Clay	6	LPQL	15	13	19	LPQL	7	20	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.3	Fill: silty clay	5	LPQL	16	20	38	LPQL	11	46	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.5-0.7	Fill: silty clay Fill: silty clay	7	LPQL	12	14 21	15 88	LPQL	5	25 64	LPQL 0.28	LPQL 0.06	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL LPQL	LPQL LPQL	Not Detected Not Detected
	0.6-0.9	Fill: silty clay	5	LPQL	12	21	46	LPQL	4	38	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.3	Fill: silty clay	5	LPQL	11	21	57	LPQL	6	71	0.28	0.06	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.5-0.6	Silty Clay	5	LPQL	7	22	23	LPQL	2	17	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
BH25	0-0.15	Fill: silty sand	LPQL	0.5	44	12	160	1.1	3	55	0.31	0.07	LPQL	LPQL	LPQL	3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.15-0.25	Fill: silty sandy gravel	6	LPQL	28	16	46	0.3	7	29	1.3	0.1	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: sandy clay	6	LPQL	33	20	130	0.1	4	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.2-0.5	Fill: silty clay Fill: silty clay	5	LPQL 0.6	17 19	23 65	63 180	LPQL 0.1	5	33 180	LPQL LPQL	LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	NA LPQL	LPQL LPQL	LPQL	LPQL	LPQL	LPQL	LPQL LPQL	LPQL	LPQL LPQL	LPQL LPQL	Not Detected Not Detected
	0.5-0.7	Silty Clay	7	LPQL	19	34	28	LPQL	2	180	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: silty clay	6	0.4	13	17	26	LPQL	7	32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
BH28	0.3-0.5	Silty Clay	6	LPQL	15	16	17	LPQL	8	18	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.2	Fill: silty clay	10	0.7	19	69	640	0.2	9	380	0.31	0.07	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: silty clay	6	LPQL	13	25	79	LPQL	7	60	1.8	0.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: silty sand	7	0.6	27	120	50	0.2	14	190	2.4	0.2	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	150	220	370	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.3-0.5	Fill: silty clay Silty Clay	5	LPQL	15 15	30 33	31	LPQL	6 7	33	0.6 LPQL	0.1 LPQL	NA	NA	NA	NA	NA NA	LPQL LPQL	LPQL	100 LPQL	LPQL	100 LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	Not Detected NA
	1-1.2	Silty Clay	6	LPQL	15	37	22	LPQL	5	21	LPQL	LPQL	NA	NA	NA	NA	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.2	Fill: clayey sand	4	LPQL	13	24	61	LPQL	5	50	8	0.76	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	110	110	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.3-0.5	Silty Clay	11	LPQL	12	46	26	LPQL	3	16	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
	0-0.2	Fill: silty clay	5	0.4	16	25	120	LPQL	6	140	6.8	0.6	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0-0.2	Fill: gravelly silty clay	6	LPQL	11	32	110	LPQL	3	55	0.1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
	0.5-0.7	Shale	8	LPQL	6	32	16	LPQL	3	14	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	NA
SP1 SP2	-	Stockpiled Soil Stockpiled Soil	LPQL LPQL	LPQL	8	7	42 39	LPQL LPQL	2	42	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	0.8	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	Not Detected Not Detected
SP3	-	Stockpiled Soil	LPQL	LPQL	7	4	8	LPQL	2	14	LPQL	LPQL	LPQL	LPQL	LPQL	0.3	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	Not Detected
S1 Total Numbe	-	Material	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 37	NA 37	NA 37	NA 37	NA 37	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	NA 48	Detected 20
Maximum Va			48 28	48	48 65	48	48 640	48	48	380	48	9.1	LPQL	LPQL	LPQL	37	LPQL	48 LPQL	48 LPQL	240	48 680	48 800	48 LPQL	48 LPQL	48 LPQL	48 LPQL	39 NC

Explanation: ¹ - NSW EPA Waste Classification Guidelines (2014)

- Assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion

VALUE VALUE VALUE

- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde

Concentration above the CT1 Concentration above SCC1 Concentration above the SCC2

Abbreviations: PAHs: Polycyclic Aromatic Hydrocarbons B(a)P: Benzo(a)pyrene PQL: Practical Quantitation Limit LPQL: Less than PQL PID: Photoionisation Detector PCBs: Polychlorinated Biphenyls

UCL: Upper Level Confidence Limit on Mean Value NA: Not Analysed NC: Not Calculated NSL: No Set Limit SAC: Site Assessment Criteria TRH: Total Recoverable Hydrocarbons

CT: Contaminant Threshold SCC: Specific Contaminant Concentration HLS: Health Investigation Levels NEPM: National Environmental Protection Measure BTEX: Monocyclic Aromatic Hydrocarbons

٦

Preliminary Stage 2 Environmental Site Assessment 1, 1A, 3 & 5 Avon Road and 4 & 8 Beechworth Road Pymble, NSW E24192K

Г

		TABLE D			
		SOIL LABORATORY TCLF			
		All data in mg/L unless st	tated otherwi	se	
			Lead	Nickel	B(a)P
PQL - Envirola	b Services		0.03	0.02	0.001
TCLP1 - Gener	al Solid Waste	2 ¹	5	2	0.04
TCLP2 - Restri	cted Solid Wa	ste ¹	20	8	0.16
TCLP3 - Hazar	dous Waste 1		>20	>8	>0.16
Sample Reference	Sample Depth	Sample Description			
BH3	0-0.1	Fill: silty sandy gravel	NA	0.06	NA
BH5	0-0.3	Fill: gravelly silty clay	NA	NA	LPQL
BH9	0-0.3	Fill: silty clayey gravel	NA	0.1	NA
BH9	1.7-1.95	Fill: silty clay	LPQL	NA	NA
BH25	0-0.15	Fill: silty sand	LPQL	NA	NA
BH26	0-0.2	Fill: sandy clay	0.06	NA	NA
BH27	0-0.3	Fill: silty clay	0.05	NA	NA
BH31	0-0.2	Fill: silty clay	0.1	NA	NA
BH35	0-0.2	Fill: silty clay	LPQL	NA	NA
BH36	0-0.2	Fill: gravelly silty clay	0.04	NA	NA
Total Numb	er of samples		7	2	1
Maximum V	alue		0.1	0.1	LPQL
Explanation: 1 - NSW EPA N General Solid Restricted Sol	Waste	ation Guidelines (2014)	VALUE VALUE		
Hazardous Wa	aste	I	VALUE		
Abbreviation					
	Quantitation	Limit			
LPQL: Less tha					
B(a)P: Benzo(a	a)pyrene				
	lated				
NC: Not Calcu					
NA: Not Analy		s Leaching Procedure			

	SUMMAR			ESULTS COMPARED TO GILs		
		All resul	ts in μg/L unless sta	ted otherwise.		
	PQL Envirolab Services	GIL - ANZECC 2000 ¹ Fresh Waters	GIL - ADWG ²	MW9	SAMPLES MW31	Creek
norganic Compounds and Parameters						
H	0.1	6.5 - 8.5 ⁱ	6.5 - 8.5 ^d	6	5.4	7
Electrical Conductivity (μS/cm)	1	NSL	NSL	670	1000	430
lardness (mgCaCo3/L)	3	NSL	200 ^d	90	26	77
Vietals						
Arsenic (As III)	1	24	10	LPQL	LPQL	LPQL
Cadmium	0.1	0.2	2	LPQL	LPQL	LPQL
Chromium (total)	2	1 ^{a^}	50 ^{a^}	LPQL	LPQL	LPQL
Copper	1	1.4	2000	2	2	3
ead	1	3.4	10	LPQL	LPQL	LPQL
Fotal Mercury (inorganic)	0.05	0.06	1	LPQL	LPQL	LPQL
Nickel	1	11	20	1	6	LPQL
linc	1	8	3000 ^d	58	70	10
Total Recoverable Hydrocarbons (TRH)						
C ₆ -C ₁₀ (F1)	25	NSL	NSL	LPQL	LPQL	LPQL
>C ₁₀ -C ₁₆ (F2)	50	NSL	NSL	82	LPQL	LPQL
C ₁₆ -C ₃₄ (F3)	100	NSL	NSL	LPQL	LPQL	LPQL
>C ₃₄ -C ₄₀ (F4)	100	NSL	NSL	LPQL	LPQL	LPQL
Monocyclic Aromatic Hydrocarbons (BTE	X Compounds)					
Benzene	1	950	1	LPQL	LPQL	LPQL
Toluene	1	180 ^a	800	LPQL	LPQL	LPQL
thylbenzene	1	80 ^a	300	LPQL	LPQL	LPQL
n+p-xylene	2	75 ^m	NSL	LPQL	LPQL	LPQL
o-xylene	1	350 ^a	NSL	LPQL	LPQL	LPQL
Fotal xylenes	2	NSL	600	LPQL	LPQL	LPQL
Polycyclic Aromatic Hydrocarbons (PAHs))					
Naphthalene	0.1	16 ^a	0.14 ^b	LPQL	LPQL	LPQL
Acenaphthylene	0.1	NSL	NSL	LPQL	LPQL	LPQL
Acenaphthene	0.1	NSL	400 ^b	LPQL	LPQL	LPQL
luorene	0.1	NSL	220 ^b	LPQL	LPQL	LPQL
henanthrene	0.1	0.6 ^c	NSL	LPQL	LPQL	LPQL
Anthracene	0.1	0.01 ^c	1300 ^b	LPQL	LPQL	LPQL
luoranthene	0.1	1 ^c	630 ^b	LPQL	LPQL	LPQL
yrene	0.1	NSL	87 ^b	LPQL	LPQL	LPQL
enzo(a)anthracene	0.1	NSL	0.029 ^b	LPQL	LPQL	LPQL
hrysene	0.1	NSL	2.9 ^b	LPQL	LPQL	LPQL
Benzo(b,j+k)fluoranthene	0.2	NSL	0.029 ^{br}	LPQL	LPQL	LPQL
Benzo(a)pyrene	0.1	0.1 ^c	0.01	LPQL	LPQL	LPQL
ndeno(1,2,3-c,d)pyrene	0.1	NSL	NSL	LPQL	LPQL	LPQL
Dibenzo(a,h)anthracene	0.1	NSL	NSL	LPQL	LPQL	LPQL
Benzo(g,h,i)perylene	0.1	NSL	NSL	LPQL	LPQL	LPQL

Explanation:

1 - ANZECC Australian Water Quality Guidelines for Fresh Waters (ANZECC 2000) - Trigger Values for protection of 95% of species

2 - NHMRC Australian Drinking Water Guidelines (ADWG 2011)

a - In the absence of a high reliability guideline concentration, the moderate or low reliability guideline concentration has been quoted

b - In the absence of Australian guidelines, the USEPA Region 9 Screening Levels for tapwater have been adopted as a preliminary screening tool

c - 99% trigger values adopted due to the potential for bioaccumulation effects

d - In the absence of a health guideline the aesthetic guideline concentration has been quoted

g - Guideline value only. The guideline criteria for this analyte should be checked with the local authority.

- ANZECC 2000 - Level for NSW Lowland Rivers.

j - ANZECC 2000 - Level for South-East Australian Estuaries

m - Guideline value adopted for m-Xylene. We note that the m-Xylene guideline value is 75ug/L and the p-Xylene guideline value is 200ug/L. However these two

isomers cannot be distinguished analytically. Therefore EIS have adopted the more conservative guideline value

r - The more conservative value for Benzo(b)fluoranthene has been adopted

a^ - The GIL for Cr VI has been adopted as a conservative measure

Concentration above the GIL

VALUE

Abbreviations:

NA: Not Analysed

NSL: No Set Limit

GIL - Groundwater Investigation Levels

PQL: Practical Quantitation Limit

LPQL: Less than Practical Quantitation Limit

Copyright Environmental Investigation Services

					TABLI TER LABORATORY I data in µg/L unles	RESULTS COMP					
				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	
PQL - Envirolal	o Services			10	50	1	1	1	3	1	PID ²
Land Use Cate	gory ¹					LOW	DENSITY RESID	ENTIAL			
Sample Reference	Water Depth	Depth Category	Soil Category								
MW9	2.14	2m to <4m	Clay	LPQL	82	LPQL	LPQL	LPQL	LPQL	LPQL	0
MW31	4.62	4m to <8m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
Creek	0	0m to <2m	Clay	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0
	FA	LSE									
Total Number	of Samples			3	3	3	3	3	3	3	3
Maximum Va Explanation:	lue			LPQL	82	LPQL	LPQL	LPQL	LPQL	LPQL	0
<u>Explanation:</u> 1 - Groundwat 2 - Field PID va	lue er Investigation L Ilues obtained du above the SAC			LPQL	82	LPQL	LPQL	LPQL	LPQL	LPQL	0
<u>Explanation:</u> 1 - Groundwat 2 - Field PID va Concentration	er Investigation L Ilues obtained du	ring the investi	gation	LPQL	82	LPQL	LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as	er Investigation L Ilues obtained du above the SAC sesment required	ring the investi _i	gation VALUE VALUE		82 Assessment Criteri		LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as The guideline of Abbreviations	er Investigation L Ilues obtained du above the SAC sesment required corresponding to	ring the investig I the elevated va	gation VALUE VALUE alue is highlighted	in grey in the Site	Assessment Criteri		LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as The guideline of Abbreviations UCL: Upper Le	er Investigation L Ilues obtained du above the SAC sesment requirec corresponding to <u>:</u> vel Confidence Liu	ring the investig I the elevated va	gation VALUE VALUE alue is highlighted	in grey in the Site PQL: Practical Qu	Assessment Criteri antitation Limit		LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as The guideline of Abbreviations UCL: Upper Le HSLs: Health S	er Investigation L Ilues obtained du above the SAC sesment required corresponding to <u>:</u> vel Confidence Lin creening Levels	ring the investig I the elevated va	gation VALUE VALUE alue is highlighted	in grey in the Site	Assessment Criteri antitation Limit		LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as The guideline of Abbreviations UCL: Upper Le HSLs: Health S NA: Not Analy:	er Investigation L Ilues obtained du above the SAC sesment requirec corresponding to <u>:</u> vel Confidence Lin creening Levels sed	ring the investig I the elevated va	gation VALUE VALUE alue is highlighted	in grey in the Site PQL: Practical Qu	Assessment Criteri antitation Limit QL		LPQL	LPQL	LPQL	LPQL	0
Explanation: 1 - Groundwat 2 - Field PID va Concentration Site specific as The guideline of Abbreviations UCL: Upper Le HSLs: Health S	er Investigation L Ilues obtained du above the SAC sesment requirec corresponding to <u>:</u> vel Confidence Lin creening Levels sed ated	ring the investig I the elevated va	gation VALUE VALUE alue is highlighted	in grey in the Site PQL: Practical Qu LPQL: Less than P SAC: Site Assessm	Assessment Criteri antitation Limit QL uent Criteria nvironmental Prote	a Table below	LPQL	LPQL	LPQL	LPQL	0

HSL GROUNDWATER ASSESSMENT CRITERIA

				C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
PQL - Envirolab	Services			10	50	1	1	1	3	1
Land Use Catego	ory ¹					LOW	DENSITY RESIDE	NTIAL		
Sample Reference	Water Depth	Depth Category	Soil Category							
MW9	2.14	2m to <4m	Clay	NL	NL	5000	NL	NL	NL	NL
MW31	4.62	4m to <8m	Clay	NL	NL	5000	NL	NL	NL	NL
Creek	0	0m to <2m	Clay	SSA	SSA	SSA	NL	NL	NL	NL

Copyright Environmental Investigation Services

											ORY RESULTS Co ta in mg/kg unle												
and Use Ca	egory 1											URBA	N RESIDENTIAL A	ND PUBLIC OP	EN SPACE								
						Clay Content			AGED HEAVY	METALS-EILS			E	ILs					ESLs				
				рН	CEC (cmol _c /kg)	(% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
QL - Enviro	ab Services			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
mbient Ba	kground Cor	ncentration (ABC) ²		-			NSL	13	28	NSL	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				1
11	0-0.2	Fill: silty clay	Fine	NA	NA	NA	6	10	13	28	5	25	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
BH2	0-0.2	Fill: silty clay	Fine	NA	NA	NA	4	10	15	54	5	58	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
H2 H3	0.5-0.8	Shale Fill: silty sandy gravel	Fine Coarse	NA 8.8	NA 24	NA 14	LPQL	6 57	31	24	5	26 54	LPQL	LPQL	LPQL	LPQL	LPQL 250	LPQL 380	LPQL	LPQL	LPQL	LPQL	LPQL
H4	0.05-0.15		Fine	8.8 NA	24 NA	14 NA	5	13	33	21	100	22	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
8H5	0-0.3	Fill: gravelly silty clay	Fine	NA	NA	NA	5	10	41	38	10	60	LPQL	LPQL	LPQL	LPQL	400	130	LPQL	LPQL	LPQL	LPQL	9.1
3H8	0-0.3	Fill: silty clay	Fine	NA	NA	NA	7	16	23	48	9	48	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.06
8H8	0.5-0.8	Silty Clay	Fine	NA	NA	NA	6	16	20	25	7	33	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
3H9	0-0.3	Fill: silty clayey gravel	Coarse	8.5	23	14	LPQL	65	30	23	78	54	LPQL	LPQL	LPQL	LPQL	590	750	LPQL	LPQL	LPQL	LPQL	0.1
8H9		Fill: silty clay	Fine	NA	NA	NA	LPQL	11	33 37	64 120	7	60 130	LPQL	NA NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.4
H9 H13	1.7-1.95 0-0.3	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA	NA	8	14	37	120 52	6	130	LPQL	NA LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.67 LPQL
H14	0-0.2	Fill: silty clay	Fine	NA	NA	NA	8	15	66	52	6	53	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H18	0-0.1	Fill: silty clay	Fine	NA	NA	NA	7	14	22	51	8	80	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
118	0.3-0.6	Fill: silty clay	Fine	NA	NA	NA	9	15	28	22	9	51	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H19	0-0.2	Fill: silty clay	Fine	NA	NA	NA	7	14	14	27	8	57	1	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H20 H20	0-0.2	Fill: silty clay Fill: silty clay	Fine Fine	NA NA	NA	NA	28	16 15	25	38	10	68 34	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H21	0-0.2	Fill: silty clay	Fine	NA	NA	NA	11	15	22	59	15	73	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.05
H21	0.3-0.5	Silty Clay	Fine	NA	NA	NA	6	15	13	19	7	20	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
8H22	0-0.3	Fill: silty clay	Fine	NA	NA	NA	5	16	20	38	11	46	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
3H22	0.5-0.7	Fill: silty clay	Fine	NA	NA	NA	7	12	14	15	5	25	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H23 H23	0-0.3	Fill: silty clay	Fine	NA	NA	NA	5	12	21	88 46	6	64 38	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.06 LPOL
H23 H24	0.6-0.9	Fill: silty clay Fill: silty clay	Fine	NA	NA	NA	5	12	28	46	6	38	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.06
H24	0.5-0.6	Silty Clay	Fine	NA	NA	NA	5	7	22	23	2	17	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H25	0-0.15	Fill: silty sand	Coarse	NA	NA	NA	LPQL	44	12	160	3	55	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
8H25	0.15-0.25	Fill: silty sandy gravel	Coarse	NA	NA	NA	6	28	16	46	7	29	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.1
3H26	0-0.2	Fill: sandy clay	Fine	NA	NA	NA	6	33	20	130	4	49	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
3H26 3H27	0.2-0.5	Fill: silty clay Fill: silty clay	Fine	NA	NA	NA	5	17	23	63 180	5	33 180	LPQL	NA LPOL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
3H27	0.5-0.7	Silty Clay	Fine	NA	NA	NA	7	19	34	28	2	180	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
8H28	0-0.2	Fill: silty clay	Fine	NA	NA	NA	6	13	17	26	7	32	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
8H28	0.3-0.5	Silty Clay	Fine	NA	NA	NA	6	15	16	17	8	18	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
3H31	0-0.2	Fill: silty clay	Fine	6.8	20	38	10	19	69	640	9	380	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	0.07
3H32	0-0.2	Fill: silty clay	Fine Coarse	NA	NA 26	NA	6	13	25 120	79 50	7	60 190	LPQL	LPQL	LPQL	LPQL	LPQL 280	LPQL 130	LPQL	LPQL	LPQL	LPQL	0.2
H33 H33	0-0.2	Fill: silty sand Fill: silty clay	Coarse Fine	6.6 NA	26 NA	28 NA	5	27	120	50	14	190 33	LPQL	LPQL NA	LPQL	LPQL 55	280	130 LPQL	LPQL	LPQL	LPQL	LPQL	0.2
H33	0.6-0.9	Silty Clay	Fine	NA	NA	NA	5	15	33	22	7	21	LPQL	NA	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H33 H34	1-1.2	Silty Clay Fill: clayey sand	Fine Coarse	NA	NA	NA NA	6	15	37 24	26 61	5	22	LPQL	NA LPOL	LPQL	LPQL	LPQL 100	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
H34 H34	0.3-0.5	Silty Clay	Fine	NA	NA	NA	4	13	46	26	3	16	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
8H35 8H36	0-0.2	Fill: silty clay Fill: gravelly silty clay	Fine	NA NA	NA NA	NA NA	5	16 11	25 32	120 110	6	140 55	LPQL	LPQL LPQL	LPQL LPQL	LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL LPQL	LPQL	LPQL	0.6 LPQL
3H36 3H36	0.5-0.7	Shale	Fine	NA	NA	NA	8	6	32	110	3	14	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL	LPQL
Total M	ber of Samp							45	45	45	45	45		34			45	45		45			45
Maximum		yies		4	4 26	2 38	45 28	45	45	45 640	45	45	45	34	45	45	45	45	45 0	45	45	45	45 9.1

ncentration above the SAC VALUE guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

Abbreviations:			
EILs: Ecological Investigation Levels	UCL: Upper Level Confidence Limit on Mean Value	LPQL: Less than PQL	NC: Not Calculated
B(a)P: Benzo(a)pyrene	ESLs: Ecological Screening Levels	SAC: Site Assessment Criteria	NSL: No Set Limit
PQL: Practical Quantitation Limit	NA: Not Analysed	NEPM: National Environmental Protection Measure	ABC: Ambient Background Concentration

EIL AND ESL ASSESSMENT CRITERIA

Land Use Cate	gory 1											URBA	N RESIDENTIAL A	ND PUBLIC OPE	IN SPACE								
	6 <i>1</i>								AGED HEAV	METALS-EILS			EI	Ls					ESLs				
				рН	CEC (cmol _c /kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolal	b Services			-	1	-	4	1	1	1	1	1	0.1	0.1	25	50	100	100	0.2	0.5	1	3	0.05
Ambient Back	ground Co	oncentration (ABC) ²		-	-	-	NSL	13	28	NSL	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				1
BH1	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH2	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH2	0.5-0.8	Shale	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH3	0-0.1	Fill: silty sandy gravel	Coarse	8.8	24	14	100	413	248	1100	355	1082	710	180	180	120	300	2800	50	85	70	105	0.7
BH4	0.05-0.15	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH5	0-0.3	Fill: gravelly silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
	0-0.3	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH8	0.5-0.8	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH9	0-0.3	Fill: silty clayey gravel	Coarse	8.5	23	14	100	413	248	1100	355	1082	710	180	180	120	300	2800	50	85	70	105	0.7
BH9	0.5-0.75	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
BH9 BH13	1.7-1.95	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
BH13 BH14	0-0.3	Fill: silty clay Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100 1100	35	192 192	710	180 180	180	120	1300 1300	5600 5600	60 60	105	125	45	0.7
	0-0.2			NA	NA	NA			88		35					120							
BH18 BH18	0-0.1	Fill: silty clay Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192 192	710	180	180	120	1300 1300	5600	60 60	105	125	45	0.7
BH18 BH19	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH20	0.3-0.5	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	- 180	180	120	1300	5600	60	105	125	45	0.7
BH21	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH22	0-0.3	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH22	0.5-0.7	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
BH23	0-0.3	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH23	0.6-0.9	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
BH24	0-0.3	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH24	0.5-0.6	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH25	0-0.15	Fill: silty sand	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
BH25	0.15-0.25		Coarse	NA	NA	NA	100	203	88	1100	35	192	710		180	120	300	2800	50	85	70	105	0.7
BH26	0-0.2	Fill: sandy clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH26	0.2-0.5	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710		180	120	1300	5600	60	105	125	45	0.7
BH27	0-0.3	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH27	0.5-0.7	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH28 BH28	0-0.2	Fill: silty clay Silty Clay	Fine	NA	NA	NA	100	203	88	1100 1100	35	192 192	710	180 180	180	120	1300 1300	5600 5600	60 60	105	125	45 45	0.7
BH28 BH31	0.3-0.5	Fill: silty clay	Fine	NA 6.8	NA 20	NA 38	100	203	238	1100	35	192 822	710	180	180	120	1300	5600	60	105	125	45	0.7
BH31 BH32	0-0.2	Fill: silty clay Fill: silty clay	Fine	6.8 NA	20 NA	38 NA	100	203	238	1100	35	822	710	180	180	120	1300	5600	60	105	125	45	0.7
	0-0.2	Fill: silty sand	Coarse	6.6	26	28	100	413	248	1100	35	192	710	180	180	120	300	2800	50	85	70	45	0.7
BH33	0.3-0.5	Fill: silty clay	Fine	NA	NA	NA	100	203	240	1100	355	192	710		180	120	1300	5600	60	105	125	45	0.7
BH33	0.6-0.9	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
BH33	1-1.2	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	-	180	120	1300	5600	60	105	125	45	0.7
	0-0.2	Fill: clayey sand	Coarse	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	300	2800	50	85	70	105	0.7
BH34	0.3-0.5	Silty Clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH35	0-0.2	Fill: silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH36	0-0.2	Fill: gravelly silty clay	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7
BH36	0.5-0.7	Shale	Fine	NA	NA	NA	100	203	88	1100	35	192	710	180	180	120	1300	5600	60	105	125	45	0.7

Copyright Environmental Investigation Services

Si	TAE OIL INTRA-LABORATORY DUPLIC/ All results in mg/kg u			JLATIONS		
SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD
3/11/1 22	740761515	PQL				%
ample Ref = BH24 0-0.3m	Arsenic	4	5	5	5.0	0
0up Ref = Dup 2	Cadmium	0.4	LPQL	LPQL	NC	NC
	Chromium	1	11	10	10.5	10
nvirolab Report: 127488	Copper	1	21	17	19.0	21
	Lead	1	57	53	55.0	7
	Mercury	0.1	LPQL	LPQL	NC	NC
	Nickel	1	6	5	5.5	18
	Zinc	1	71	63	67.0	12
	Naphthalene	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	LPQL	LPQL	NC	NC
	Anthracene	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	0.1	LPQL	0.1	67
	Pyrene	0.1	0.1	LPQL	0.1	67
	Benzo(a)anthracene	0.1	LPQL	LPQL	NC	NC
	Chrysene	0.1	LPQL	LPQL	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	LPQL	LPQL	NC	NC
	Benzo(a)pyrene	0.05	0.06	0.05	0.1	18
	Indeno(123-cd)pyrene	0.1	LPQL	LPQL	NC	NC
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	LPQL	LPQL	NC	NC
	Benzo(a)pyrene TEQ	0.5	LPQL	LPQL	NC	NC
	Total OCPs	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	LPQL	LPQL	NC	NC
	TRH C ₆ -C ₁₀ (F1)	25	LPQL	LPQL	NC	NC
	TRH >C ₁₀ -C ₁₆ (F2)	50	LPQL	LPQL	NC	NC
	TRH >C ₁₆ -C ₃₄ (F3)	100	LPQL	LPQL	NC	NC
	TRH >C ₃₄ -C ₄₀ (F4)	100	LPQL	LPQL	NC	NC
	Benzene	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	, m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbrev	/la	τιοι	ıs:	
			_	

PQL: Practical Quantitation Limit LPQL: Less than PQL NA: Not Analysed NC: Not Calculated OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TRH: Total Recoverable Hydrocarbons

Si	TAI DIL INTRA-LABORATORY DUPLIC/ All results in mg/kg u			JLATIONS		
SAMPLE	ANALYSIS	Envirolab	INITIAL	REPEAT	MEAN	RPD
3/11/1 22	7.07.21515	PQL				%
ample Ref = BH35 0-0.2m	Arsenic	4	6	4	5.0	40
up Ref = Dup 3	Cadmium	0.4	LPQL	0.4	0.3	67
	Chromium	1	13	14	13.5	7
nvirolab Report: 127448	Copper	1	25	25	25.0	0
	Lead	1	79	130	104.5	49
	Mercury	0.1	LPQL	0.1	0.1	67
	Nickel	1	7	6	6.5	15
	Zinc	1	60	150	105.0	86
	Naphthalene	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	0.6	0.8	0.7	29
	Anthracene	0.1	0.1	0.1	0.1	0
	Fluoranthene	0.1	1.4	1.4	1.4	0
	Pyrene	0.1	1.3	1.3	1.3	0
	Benzo(a)anthracene	0.1	0.6	0.6	0.6	0
	Chrysene	0.1	0.6	0.6	0.6	0
	Benzo(b,j+k)fluoranthene	0.2	1	1	1.0	0
	Benzo(a)pyrene	0.05	0.6	0.61	0.6	2
	Indeno(123-cd)pyrene	0.1	0.3	0.3	0.3	0
	Dibenzo(ah)anthracene	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	0.4	0.3	0.4	29
	Benzo(a)pyrene TEQ	0.5	0.8	0.8	0.8	0
	Total OCPs	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	LPQL	LPQL	NC	NC
	Benzene	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations: PQL: Practical Quantitation Limit
PQL: Practical Quantitation Limit

LPQL: Less than PQL

NA: Not Analysed

NC: Not Calculated

OCP: Organochlorine Pesticides OPP: Organophosphorus Pesticides PCBs: Polychlorinated Biphenyls TRH: Total Recoverable Hydrocarbons

	SOIL INTER-LABORATORY All results in		RESULTS & RPD C/		5		
SAMPLE	ANALYSIS	Envirolab PQL	Envirolab VIC PQL	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = BH34 0-0.2m	Arsenic	4	4	4	4	4.0	0
Dup Ref = Dup 1	Cadmium	0.4	0.4	LPQL	LPQL	NC	NC
	Chromium	1	1	13	24	18.5	59
Envirolab Report: 127448	Copper	1	1	24	23	23.5	4
Envirolab VIC Report: 6246	Lead	1	1	61	600	330.5	163
	Mercury	0.1	0.1	LPQL	LPQL	NC	NC
	Nickel	1	1	5	6	5.5	18
	Zinc	1	1	50	79	64.5	45
	Naphthalene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	0.1	0.7	0.3	0.5	80
	Anthracene	0.1	0.1	0.1	LPQL	0.1	67
	Fluoranthene	0.1	0.1	1.5	0.7	1.1	73
	Pyrene	0.1	0.1	1.3	0.6	1.0	74
	Benzo(a)anthracene	0.1	0.1	0.7	0.3	0.5	80
	Chrysene	0.1	0.1	0.7	0.4	0.6	55
	Benzo(b,j+k)fluoranthene	0.2	0.2	1	0.6	0.8	50
	Benzo(a)pyrene	0.05	0.05	0.76	0.5	0.6	41
	Indeno(123-cd)pyrene	0.1	0.1	0.4	0.2	0.3	67
	Dibenzo(ah)anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	0.1	0.5	0.2	0.4	86
	Benzo(a)pyrene TEQ	0.5	0.5	1	0.6	0.8	50
	Total OCPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	100	LPQL	LPQL	NC	NC
	Benzene	0.5	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	2	LPQL	LPQL	NC	NC
	o-xylene	1	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

 PQL: Practical Quantitation Limit
 OCP: Organochlorine Pesticides

 LPQL: Less than PQL
 OPP: Organophosphorus Pesticides

 NA: Not Analysed
 PCBs: Polychlorinated Biphenyls

 NC: Not Calculated
 TRH: Total Recoverable Hydrocarbons

	All results in	mg/kg unles	s stated otherwise	e			
SAMPLE	ANALYSIS	Envirolab PQL	Envirolab VIC PQL	INITIAL	REPEAT	MEAN	RPD %
Sample Ref = BH14 0-0.2m	Arsenic	4	4	8	7	7.5	13
Dup Ref = Dup 5	Cadmium	0.4	0.4	LPQL	LPQL	NC NC	NC
Sup nei – Bup S	Chromium	1	1	15	14	14.5	7
Envirolab Report: 127448	Copper	1	1	66	46	56.0	36
Envirolab VIC Report: 6246	Lead	1	1	52	44	48.0	17
	Mercury	0.1	0.1	0.1	LPQL	0.1	67
	Nickel	1	1	6	5	5.5	18
	Zinc	1	1	53	44	48.5	19
	Naphthalene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthylene	0.1	0.1	LPQL	LPQL	NC	NC
	Acenaphthene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluorene	0.1	0.1	LPQL	LPQL	NC	NC
	Phenanthrene	0.1	0.1	LPQL	LPQL	NC	NC
	Anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Fluoranthene	0.1	0.1	LPQL	LPQL	NC	NC
	Pyrene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(a)anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Chrysene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(b,j+k)fluoranthene	0.2	0.2	LPQL	LPQL	NC	NC
	Benzo(a)pyrene	0.05	0.05	LPQL	LPQL	NC	NC
	Indeno(123-cd)pyrene	0.1	0.1	LPQL	LPQL	NC	NC
	Dibenzo(ah)anthracene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(ghi)perylene	0.1	0.1	LPQL	LPQL	NC	NC
	Benzo(a)pyrene TEQ	0.5	0.5	LPQL	LPQL	NC	NC
	Total OCPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total OPPs	0.1	0.1	LPQL	LPQL	NC	NC
	Total PCBs	0.1	0.1	LPQL	LPQL	NC	NC
	TRH C6-C10 (F1)	25	25	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	50	LPQL	LPQL	NC	NC
	TRH >C16-C34 (F3)	100	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	100	LPQL	LPQL	NC	NC
	Benzene	0.5	0.5	LPQL	LPQL	NC	NC
	Toluene	0.5	0.5	LPQL	LPQL	NC	NC
	Ethylbenzene	1	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	2	LPQL	LPQL	NC	NC
	o-xylene	1	1	LPQL	LPQL	NC	NC

Explanation:

The RPD value is calculated as the absolute value of the difference between the initial and

repeat results divided by the average value expressed as a percentage. The following acceptance

criteria will be used to assess the RPD results:

Results > 10 times PQL = RPD value <= 50% are acceptable

Results between 5 & 10 times PQL = RPD value <= 75% are acceptable

Results < 5 times PQL = RPD value <= 100% are acceptable

If result is LPQL then 50% of the PQL is used for the calculation

RPD Results Above the Acceptance Criteria

VALUE

Abbreviations:

 PQL: Practical Quantitation Limit
 OCP: Organochlorine Pesticides

 LPQL: Less than PQL
 OPP: Organophosphorus Pesticides

 NA: Not Analysed
 PCBs: Polychlorinated Biphenyls

 NC: Not Calculated
 TRH: Total Recoverable Hydrocarbons

TABLE L SOIL INTER-LABORATORY DUPLICATE RESULTS & RPD CALCULATIONS All results in mg/kg unless stated otherwise												
SAMPLE ANALYSIS Envirolab Envirolab VIC INITIAL REPEAT MEAN Sample Ref = RH24.0.0 2m Lood 1 1 61 72 67.0												
Sample Ref = BH34 0-0.2m Dup Ref = Dup 1	Lead	1	1	61	73	67.0	18					
Envirolab Report: 127448 Image: Constraint of the second sec												
repeat results divided by the ave	erage value expressed as a per	contage The foll	wing accontance									
criteria will be used to assess the Results > 10 times PQL = RPD va Results between 5 & 10 times F Results < 5 times PQL = RPD val If result is LPQL then 50% of the	e RPD results: alue <= 50% are acceptable PQL = RPD value <= 75% are ac lue <= 100% are acceptable	ceptable										
criteria will be used to assess the Results > 10 times PQL = RPD va Results between 5 & 10 times P Results < 5 times PQL = RPD val If result is LPQL then 50% of the RPD Results Above the Acceptan	e RPD results: alue <= 50% are acceptable PQL = RPD value <= 75% are ac lue <= 100% are acceptable PQL is used for the calculation	ceptable										
criteria will be used to assess the Results > 10 times PQL = RPD va Results between 5 & 10 times P Results < 5 times PQL = RPD val If result is LPQL then 50% of the RPD Results Above the Acceptan Abbreviations:	e RPD results: alue <= 50% are acceptable PQL = RPD value <= 75% are ac lue <= 100% are acceptable PQL is used for the calculation	ceptable VALUE										
criteria will be used to assess the Results > 10 times PQL = RPD va Results between 5 & 10 times P Results < 5 times PQL = RPD val If result is LPQL then 50% of the RPD Results Above the Acceptan <u>Abbreviations:</u> PQL: Practical Quantitation Limit	e RPD results: alue <= 50% are acceptable PQL = RPD value <= 75% are ac lue <= 100% are acceptable PQL is used for the calculation	Ceptable VALUE OCP: Organocl	nlorine Pesticides									
criteria will be used to assess the Results > 10 times PQL = RPD va Results between 5 & 10 times P Results < 5 times PQL = RPD val If result is LPQL then 50% of the RPD Results Above the Acceptan	e RPD results: alue <= 50% are acceptable PQL = RPD value <= 75% are ac lue <= 100% are acceptable PQL is used for the calculation	Ceptable VALUE OCP: Organocl OPP: Organop										

1

r

	ANALYSIS	Envirolab PQL	INITIAL	REPEAT	MEAN	RPD %
ample Ref = MW9	Arsenic	1	LPQL	LPQL	NC	NC
Dup Ref = Dup A	Cadmium	0.1	LPQL	0.1	0	67
	Chromium	1	LPQL	LPQL	NC	NC
nvirolab Report: 127766	Copper	1	2	2	2	0
	Lead	1	LPQL	LPQL	NC	NC
	Mercury	0.5	LPQL	LPQL	NC	NC
	Nickel	1	1	2	2	67
	Zinc	1	58	59	59	2
	TRH C6-C10 (F1)	10	LPQL	LPQL	NC	NC
	TRH >C10-C16 (F2)	50	82	68	75	19
	TRH >C16-C34 (F3)	100	LPQL	LPQL	NC	NC
	TRH >C34-C40 (F4)	100	LPQL	LPQL	NC	NC
	Benzene	1	LPQL	LPQL	NC	NC
	Toluene	1	LPQL	LPQL	NC	NC
	Ethylbenzene	1	LPQL	LPQL	NC	NC
	m+p-xylene	2	LPQL	LPQL	NC	NC
	o-xylene	1	LPQL	LPQL	NC	NC

Abbreviations:

Abbreviations.	
PQL: Practical Quantitation Limit	OCP: Organochlorine Pesticides
LPQL: Less than PQL	OPP: Organophosphorus Pesticides
NA: Not Analysed	PCBs: Polychlorinated Biphenyls
NC: Not Calculated	TRH: Total Recoverable Hydrocarbons

E24192K

TABLE N SUMMARY OF FIELD QA/QC RESULTS												
ANALYSIS	Enviro	olab PQL	TBS ^s 4/05/2015	FR1 ^w 30/04/2015	FR2 ^w 1/05/2015	FR3 ^w 5/05/2015	TSW ^w 11/05/2015					
	mg/kg	μg/L	127448 mg/kg	127448 µg/L	127448 μg/L	127448 μg/L	127766 % Recovery					
Benzene	1	1	LPQL	LPQL	LPQL	LPQL	103					
Toluene	1	1	LPQL	LPQL	LPQL	LPQL	105					
Ethylbenzene	1	1	LPQL	LPQL	LPQL	LPQL	101					
m+p-xylene	2	2	LPQL	LPQL	LPQL	LPQL	103					
o-xylene	1	1	LPQL	LPQL	LPQL	LPQL	97					
^w Sample type (water) ^S Sample type (sand) BTEX concentrations in trip s	·	ed as % recover	y									
Values above PQLs/Acceptan												
Values above PQLs/Acceptan Abbreviations:												
		TB: Trip Blank										
Abbreviations: PQL: Practical Quantitation Li												
Abbreviations:		TB: Trip Blank	nple									

Appendix A: Borehole Logs

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

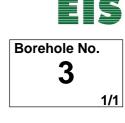
ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

С	lien	t:		AUSB	AO P	YMBL	E PTY	LTD				
P	roje	ct:		PROF	POSEI	D RES	IDEN	TIAL DEVELOPMENT				
L	ocat	ion	:	1,1A,3	3 & 5 /	AVON	ROAE	AND 4 & 8 BEECHWORTH F	road, f	PYMB	LE, NSV	V
J	ob N	lo.	E2	4192K								ace: N/A
D	ate:	1-	5-1	5				JK308	Datum:			
					Logged/Checked by: G.F./A.K.							
Groundwater	Record	ASS SAMPLES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY COM	(ON				-			FILL: Silty clay, medium to high plasticity, brown, trace of ash, root fibres and fine to medium grained	MC>PL			GRASS COVER
				N = 27 15,12,15	- - 1 -		-	 ironstone gravel. SHALE: light grey, with iron indurated bands and clay bands. 	XW	EL		VERY LOW 'TC' BIT RESISTACE
-					-			END OF BOREHOLE AT 1.5m				-
					-	-						-
					2							-
					-	-						-
					-							-
					3 -	-						_
					-	-						-
					-	-						-
					4 -							-
					-							-
					-							-
					-							-
					5							-
					-							-
					-							-
					6 -							_
E					-							-
COPYRIGHT					-							-
COP					- 7_							

ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS

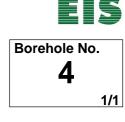
ENVIRONMENTAL LOG



Environmental logs are not to be used for geotechnical purposes

Γ	Clien	nt:		AUSB	BAO P	YMBL	E PTY	LTD					
	Proje	ect:	:	PROF	POSE	D RES	IDEN	TIAL DEVELOPMENT					
	Loca	tio	n:	1,1A,3	3 & 5 /	AVON	ROAD	O AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V	
ſ	Job I	No.	E	24192K			Meth	od: SPIRAL AUGER		R	.L. Surf	ace: N/A	
	Date	: 1	-5-	15	JK308						Datum:		
		1					Logo	jed/Checked by: G.F./A.K.					
		ES ASS	ASB SAMPLES SAI	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
C	DRY ON COMPLE ION				0			FILL: Silty clay, medium to high plasticity, brown, trace of ash, root fibres and fine to medium grained	MC>PL			GRASS COVER	
				N = 25 12,10,15	- - 1 – -		-	¬ironstone and shale gravel. /- SHALE: light grey, with iron indurated bands and clay bands.	XW	EL		VERY LOW 'TC' BIT RESISTACE - -	
╞					-			END OF BOREHOLE AT 1.5m				-	
					-	-						-	
					2 -							_	
					-							-	
					-	-						-	
					3 -							-	
					-	-						-	
					-	-						-	
					-	-						-	
					4 -							-	
						-						-	
					-							-	
					5 -	-						_	
												-	
					-	-						-	
					-	-						-	
					6 -							-	
Η												-	
COPYRIGHT					-							-	
8					7_								

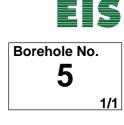
ENVIRONMENTAL INVESTIGATION SERVICES CONSULTING ENVIRONMENTAL ENGINEERS


ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

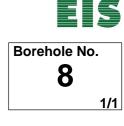
ſ	Clier	nt:		AUSB	BAO P	YMBL	Ε ΡΤΥ	LTD				
	Proje	ect:		PROF	POSEI	D RES	IDEN	TIAL DEVELOPMENT				
	Loca	itio	n:	1,1A,3	1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYN							V
ſ	Job l	No.	E2	24192K			Meth	od: SPIRAL AUGER		R	.L. Surf	ace: N/A
	Date	: 1	-5-1	15	JK308							
							Logo	jed/Checked by: G.F./A.K.	I			
	Groundwater Record	ES ASS CAMPIES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
C	DRY ON COMPLE	T			0		-	FILL: Silty sandy gravel, fine to medium grained igneous and quartz, brown, trace of brick, tile and slag	M XW	EL		VERY LOW 'TC' BIT
				N = 24 8,11,13	-			tragments. SHALE: light grey, with iron indurated bands and clay bands.				- RESISTACE
					1 -							-
					-							-
					-			END OF BOREHOLE AT 1.5m				-
					2 -							_
					-							-
					-							-
					3 -							-
					-							-
					-							-
					- 4 -							-
					-							-
					-							-
					-							-
					5 —							-
					-							-
					-							-
					6 -							-
노					-							-
COPYRIGHT					-							-
<u></u>					7_							_

ENVIRONMENTAL LOG

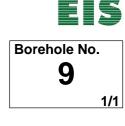


Environmental logs are not to be used for geotechnical purposes

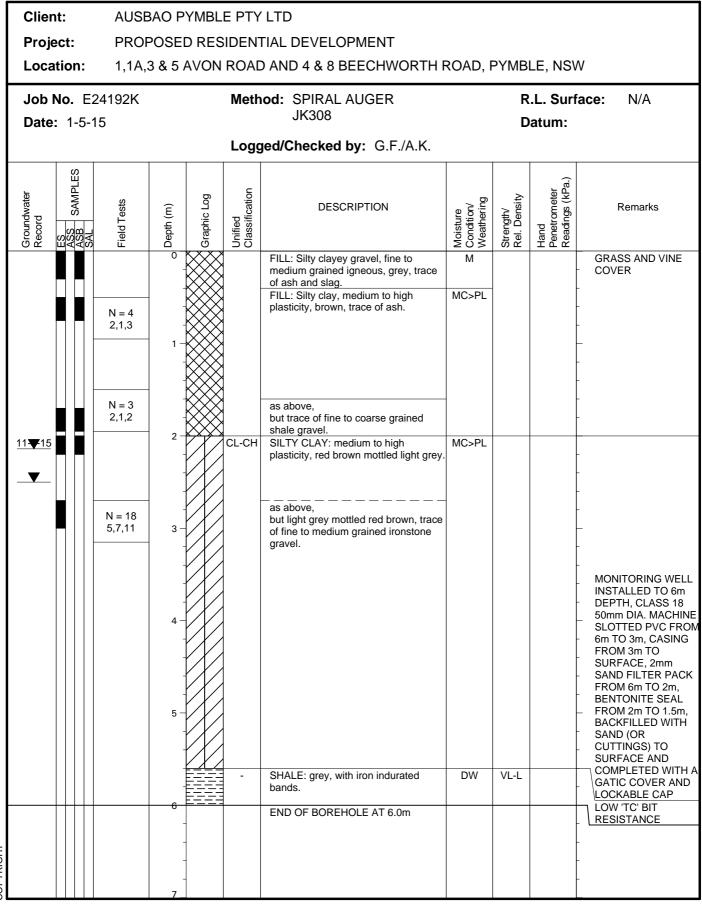
Γ	Client: AUSBAO PYMBLE PTY LTD Project: PROPOSED RESIDENTIAL DEVELOPMENT												
	-												
	Loca	itio	n:		1,1A,3	3 & 5 /	AVON	ROAE	ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW				
	Job	No.	. E	241	92K			Meth	od: HAND AUGER		R.L. Surface: N/A		
	Date	: 1	-5-	15							D	atum:	
				-				Logged/Checked by: G.F./A.K.					
	Groundwater Record	ES ASS	ASB SAMPLES		Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
D	ORY ON	-				0		СН	ASPHALTIC CONCRETE: 50mm.t /	MC>PL			POSSIBLY FILL RESIDUAL
	ION					-			and light brown, trace of ash and fine to medium grained ironstone gravel.				-
						- - 1 — -			SILTY CLAY: high plasticity, orange brown and light brown, trace of ash and fine to medium grained ironstone gravel. END OF BOREHOLE AT 0.5m				- - -
						- - 2 — -							-
						3							- - - -
						- 4 -							- - -
						- 5 — - -							- -
						- 6 - - - - 7							-


COPYRIGHT

ENVIRONMENTAL LOG


Client: AUSBAO PYMBLE PTY LTD												
Project:	PROPOSED	ROPOSED RESIDENTIAL DEVELOPMENT										
Location:	1,1A,3 & 5 A\	VON ROAD	PYMB	LE, NSV	V							
Job No. E24	192K	Meth		R.L. Surface: N/A								
Date: 4-5-15					D	atum:						
		Logg	ed/Checked by: G.F./A.K.									
Groundwater Record ES ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
DRY ON COMPLET	0 -	\bigotimes	FILL: Gravelly silty clay, medium to high plasticity, light brown, orange	MC>PL		-	GRASS AND VINE COVER					
			brown and grey, fine to medium grained shale, ironstone and sandstone gravel, trace of ash and roots. END OF BOREHOLE AT 0.3m				 HAND AUGER REFUSAL <l< th=""></l<>					

ENVIRONMENTAL LOG



Client:	AUSBAO P	JSBAO PYMBLE PTY LTD									
Project:	PROPOSE	D RESID	ENTIAL DEVELOPM	ENT							
Location:	1,1A,3 & 5 /	AVON RO	DAD AND 4 & 8 BEE	PYMBI	_E, NSV	V					
Job No. E24	192K	Μ	ethod: HAND AUG	R.L. Surface: N/A							
Date: 4-5-15				D	atum:						
		L	ogged/Checked by:	I							
Groundwater Record ES ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified	DESCRIPT OCIASSI	Moisture Conditic	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLET ION	0		FILL: Silty clay, media plasticity, brown, trac and fine to medium g	um to high MC>PL e of ash, glass		-	GRASS AND VINE COVER				
	-	C	H <u>gravel.</u> SILTY CLAY: high pla brown, trace of ash a medium grained irons	MC>PL asticity, orange nd fine to stone gravel.		-	RESIDUAL				
COPYRIGHT			END OF BOREHOLE	: A I 0.9m							

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

COPYRIGHT

ENVIRONMENTAL LOG

Borehole No. 13 1/1

Client:							
Project:	PROPOSE	D RESIDE	ITIAL DEVELOPMENT				
Location:	1,1A,3 & 5	AVON RO	D AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V
Job No. E24	192K	Ме	hod: HAND AUGER		R	.L. Surf	ace: N/A
Date: 30-4-1	5			Datum:			
		Lo	ged/Checked by: G.F./A.K.				
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION	0	СН	FILL: Silty clay, medium plasticity, brown, trace of ash, root fibres and fine to medium grained shale and vironstone gravel. SILTY CLAY: high plasticity, orange brown and light brown.	MC>PL			BARK COVER
COPYRIGHT			END OF BOREHOLE AT 0.9m				

ENVIRONMENTAL LOG

Borehole No. 14 1/1

Client:	AUSBAO PYME	BLE PTY LTD				
Project:	PROPOSED R	SIDENTIAL DEVELOP	MENT			
Location:	1,1A,3 & 5 AVC	N ROAD AND 4 & 8 BEI	ECHWORTH ROAD, F	PYMBLE, NSV	V	
Job No. E24	192K	Method: HAND AUC	GER	R.L. Surface: N/A		
Date: 5-5-15			Datum:			
		Logged/Checked by	: G.F./A.K.			
Groundwater Record ES SAMPLES SAL	Field Tests Depth (m) Grabhic Log	DESCRII Classification Classification	Moisture Conditio	Strength/ Rel. Density Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET	° 🔀	FILL: Silty clay, med	dium plasticity, MC>PL		GRASS COVER	
ION		SILTY CLAY: high p brown and light brow and fine to medium	blasticity, orange wn, trace of ash		RESIDUAL	
	-	L\gravel. END OF BOREHOL	.E AT 0.7m		-	
					-	
					-	
	_				-	
					-	
	2 -				-	
					-	
	-				-	
	-				-	
	3 -				-	
					-	
	_			-	-	
	_				-	
	4 –				-	
				-	-	
	-				-	
	-				-	
	5 -				-	
				-	-	
	-				-	
					-	
	6 -				-	
					-	
RIGH					-	
COPYRIGHT	7				-	

ENVIRONMENTAL LOG

Borehole No. 18 1/1

Environmental logs are not to b	e used for geotechnical purposes
---------------------------------	----------------------------------

Client:												
Project:	PROPOSE	D RESIDEN	TIAL DEVELOPMENT									
Location:	1,1A,3 & 5 /	AVON ROA	D AND 4 & 8 BEECHWORTH I	ROAD, I	PYMB	LE, NSV	V					
Job No. E24	192K	Met	Method: HAND AUGER			R.L. Surface: N/A						
Date: 5-5-15					Datum:							
		Log	ged/Checked by: G.F./A.K.									
Groundwater Record ES ASB SAMPLES SAL	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
DRY ON COMPLET ION	0		 FILL: Silty clay, medium plasticity, dark brown, trace of roots and fine to medium grained ironstone gravel. FIL: Silty clay, medium plasticity, orange brown light grav and light 	MC≈PL			LEAF AND BARK COVER					
COPYRIGHT			orange brown, light grey and light brown, trace of fine to medium grained shale and ironstone gravel. END OF BOREHOLE AT 0.7m				AND AUGER REFUSAL					

ENVIRONMENTAL LOG

Borehole No. 19 1/1

Client:	AUSBAO P	USBAO PYMBLE PTY LTD									
Project:	PROPOSE	D RESIDEN	TIAL DEVELOPMENT								
Location:	1,1A,3 & 5		D AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V				
Job No. E24	192K	Meth	nod: HAND AUGER		R.L. Surface: N/A						
Date: 5-5-15											
		Log	ged/Checked by: G.F./A.K.								
Groundwater Record <u>ES</u> ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks				
DRY ON COMPLET	0		FILL: Silty clay, medium plasticity, brown, trace of roots fibres, ash and	MC>PL		-	LEAF COVER				
	-	СН	fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, orange brown and light brown, trace of ash and fine to medium grained ironstone,	MC>PL		-	RESIDUAL				
COPYRIGHT			END OF BOREHOLE AT 0.9m								

ENVIRONMENTAL LOG

Borehole No. 20 1/1

C	lient:	AUSB	AO P	YMBL	E PTY	LTD					
P	roject:	PROF	POSEI	D RES	IDEN	TIAL DEVELOPMENT					
L	ocation:	1,1A,3	3 & 5 /	AVON	ROAD	AND 4 & 8 BEECHWORTH F	ROAD, F	PYMBLE, NSW			
J	ob No. E24	4192K			Meth	Method: HAND AUGER			R.L. Surface: N/A		
D	ate: 5-5-1	5							Datum:		
					Logg	ed/Checked by: G.F./A.K.					
Groundwater	Record ES ASB SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
		Ē			Uni WS	FILL: Silty clay, medium plasticity, dark brown, trace of roots, fine to medium grained sand and fine to medium grained sand and fine to medium grained ironstone gravel. FILL: Silty clay, high plasticity, brown, light grey and red brown, trace of ash and fine to medium grained duartz gravel. SILTY SAND: fine to medium grained orange brown, trace of clay fines and fine to medium grained quartz gravel. SILTY CLAY: high plasticity, light grey mottled red brown, trace of fine to medium grained ironstone gravel. END OF BOREHOLE AT 1.3m	MC>PL	Stre	Har	ALLUVIAL ALLUVIAL ALLUVIAL ARESIDUAL ARESIDUAL	

ENVIRONMENTAL LOG

C	Client: AUSBAO PYMBLE PTY LTD Project: PROPOSED RESIDENTIAL DEVELOPMENT										
P	Projec	t:	PROF	POSE	D RES	IDEN	TIAL DEVELOPMENT				
L	.ocati	on:	1,1A,3	3&5/	AVON	ROA	O AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V
J	lob No	5. E2	4192K			Meth	od: HAND AUGER		R.L. Surface: N/A		
	Date:	5-5-1	5							atum:	
				Logged/Checked by: G.F./A.K.							
Groundwater		ASS SAMPLES ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DR	Y ON IPLET-			0	\bigotimes		FILL: Silty clay, medium plasticity,	MC>PL			LEAF COVER
10	ON			-		CL-CH	roots and fine to medium grained ironstone gravel.	MC>PL			RESIDUAL
				-	X		SILTY CLAY: medium to high				-
				-			of ash and fine to medium grained				-
				1 –			ironstone gravel. END OF BOREHOLE AT 0.7m				-
				-							
				-							
				-							
				2 –							-
											-
				-							-
				-							-
				3 –							_
				-							-
				-							-
				-							-
				4 –							_
				-							
				-							-
				-							-
				5 —							_
				-							-
				-							-
				-							-
				6-							-
				- 0							-
⊢				-							
RIGH				-							-
COPYRIGHT				-							-
				/						I	

ENVIRONMENTAL LOG

Borehole No. 22 1/1

Client:	AUSBAO P	YMBLE	PTY	LTD					
Project:	PROPOSE	D RESII	DENT	TAL DEVELOPMENT					
Location:	1,1A,3 & 5	AVON F	ROAD	AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V	
Job No. E24			Meth	od: HAND AUGER		R.L. Surface: N/A			
Date: 5-5-15							Datum:		
		Logged/Checked by: G.F./A.K.							
Groundwater Record ES ASB SAL	Field Tests Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET ION	0			FILL: Silty clay, medium plasticity, brown, trace of ash, roots and fine to medium grained ironstone gravel.	MC>PL			GRASS COVER	
				FILL: Silty clay, medium plasticity, orange brown, light grey and light brown, with fine to coarse grained shale and ironstone gravel, trace of				-	
				ash. END OF BOREHOLE AT 1.0m				HAND AUGER REFUSAL	
								-	
	2 -							_	
								-	
								-	
	3 -							-	
								-	
								-	
								-	
	4 -							-	
								-	
								-	
	5 -							_	
								-	
								-	
	6 -							-	
								-	
RIGHT								-	
СОРУКІСНТ	7							-	

ENVIRONMENTAL LOG

Borehole No. 23 1/1

Client:	AUSBAC	PYMBL	E PTY	LTD				
Project:	PROPOS	SED RES		TIAL DEVELOPMENT				
Location:	1,1A,3 &	5 AVON	ROAD	AND 4 & 8 BEECHWORTH F	ROAD, F	PYMB	LE, NSV	V
Job No. E2	4192K		Meth	od: HAND AUGER		R.L. Surface: N/A		
Date: 30-4-	15							
		Logged/Checked by: G.F./A.K.						
Groundwater Record ES SAL SAL	Field Tests	Craphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET ION				 FILL: Silty clay, medium plasticity, brown, trace of ash, root fibres, fine to medium grained shale, ironstone and sandstone gravel. FILL: Silty clay, medium to high plasticity, brown, orange brown and grey, trace of fine to coarse grained shale and ironstone gravel. 	MC>PL			GRASS COVER
COPYRIGHT		2		END OF BOREHOLE AT 1.0m				HAND AUGER REFUSAL

ENVIRONMENTAL LOG

S Borehole No. 24 1/1

Environmental	logs are	not to be	used for	geotechnical	purposes

Client:		AUSBA	AUSBAO PYMBLE PTY LTD									
Project	t:	PROPO	PROPOSED RESIDENTIAL DEVELOPMENT									
Locatio	on:	1,1A,3 8	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW									
Job No	b. E24	192K			Meth	od: HAND AUGER		R.L. Surface: N/A				
Date:	30-4-1	5										
					Logo	jed/Checked by: G.F./A.K.						
	ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLET ION			0		СН	FILL: Silty clay, medium plasticity, brown, trace of root fibres, ash and fine to medium grained ironstone gravel.	MC>PL			GRASS COVER		
			- 1-			SILTY CLAY: high plasticity, light grey mottled red brown, trace roots and fine to medium grained ironstone gravel. END OF BOREHOLE AT 0.6m	V			RESIDUAL HAND AUGER REFUSAL		
						END OF BOREHOLE AT 0.00						
			- - 6 - - - - - -							-		

COPYRIGHT

ENVIRONMENTAL LOG

Borehole No. 25 1/1

Client:	AUSBAO PYMBLE PTY LTD								
Project:	PROPOSED	RESIDENT	TIAL DEVELOPMENT						
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW								
Job No. E24	192K	K Method: HAND AUGER					ace: N/A		
Date: 30-4-1	5				D	atum:			
		Logg	ed/Checked by: G.F./A.K.						
Groundwater Record <u>ES</u> ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON	0		FILL: Silty sand, fine to medium	М		-	GRASS COVER		
ION		СН	FILL: Sandy silty gravel, fine to medium grained, dark grey and	MC>PL		-	RESIDUAL		
			brown, slag gravel, trace of clay. SILTY CLAY: high plasticity, light brown and orange brown, trace of fine to medium grained ironstone gravel. END OF BOREHOLE AT 0.6m				HAND AUGER REFUSAL		

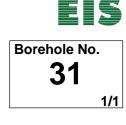
ENVIRONMENTAL LOG

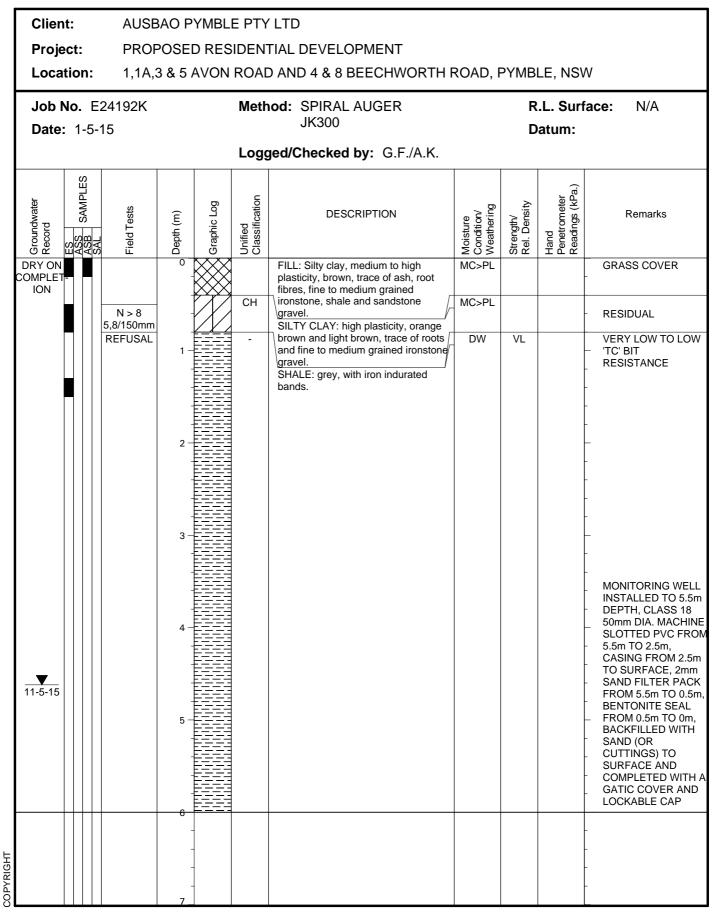
Borehole No. 26 1/1

Client:	AUSBAO P	YMBLE PTY	' LTD							
Project:	PROPOSEI	D RESIDEN	TIAL DEVELOPMENT							
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW									
Job No. E24	192K	Meth	od: HAND AUGER	R.L. Surface: N/A						
Date: 30-4-1	5				D	atum:				
		Logę	ged/Checked by: G.F./A.K.							
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET ION	0		FILL: Sandy clay, low plasticity, brown, trace of root fibres. FILL: Silty clay, medium to high plasticity, brown, light grey, and orange	MC>PL			GRASS COVER			
			plasticity, brown, light grey and orange brown, trace of ash and fine to medium grained ironstone and shale gravel. END OF BOREHOLE AT 0.5m				 HAND AUGER REFUSAL 			

ENVIRONMENTAL LOG

		Ξ
Bore	ehole No).
	27	
		1/1


Client:	AUSBAO PYMBLE PTY LTD								
Project:	PROPOSE	D RESIDEN	TIAL DEVELOPMENT						
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW								
Job No. E24	192K	2K Method: HAND AUGER					ace: N/A		
Date: 30-4-1	5				D	atum:			
		Log	ged/Checked by: G.F./A.K.						
Groundwater Record <u>ES</u> ASB SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLET ION	0	СН	FILL: Silty clay, medium to high plasticity, brown, trace of ash, root fibres and fine to medium grained vironstone gravel. SILTY CLAY: high plasticity, orange brown and light grey, trace of roots.	MC>PL			GRASS AND VINE COVER RESIDUAL		
			END OF BOREHOLE AT 0.9m						


ENVIRONMENTAL LOG

Borehole No. 28 1/1

Client:	AUSBAO PYMBLE PTY LTD									
Project:	PROPOSED F	RESIDENT	IAL DEVELOPMENT							
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW									
Job No. E24	192K	Metho	R	.L. Surf	ace: N/A					
Date: 5-5-15					D	atum:				
		Logge	ed/Checked by: G.F./A.K.							
Groundwater Record ES SAMPLES SAL		Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLET-			FILL: Silty clay, medium plasticity, brown, trace of fine to medium grained	MC>PL		-	LEAF COVER			
ION			ironstone and shale gravel, ash and root fibres.	MC>PL			POSSIBLY FILL			
			SILTY CLAY: high plasticity, light brown, trace of roots, ash and fine to medium grained ironstone gravel. END OF BOREHOLE AT 0.5m				HAND AUGER REFUSAL			

ENVIRONMENTAL LOG

ENVIRONMENTAL LOG

Borehole No. 32 1/1

	Clier	it:	AUSE	BAO P	YMBL	Ε ΡΤΥ	' LTD				
	Proje	ect:	PROF	POSEI	D RES	IDEN	TIAL DEVELOPMENT				
	Loca	tion:	1,1A,3	3 & 5 /	AVON	ROAD	D AND 4 & 8 BEECHWORTH F	road, f	PYMB	LE, NSV	V
	Job I	No. E	24192K							.L. Surf	ace: N/A
	Date	: 1-5	-15				JK300		D	atum:	
						Logo	ged/Checked by: G.F./A.K.				
	Groundwater Record	ES ASS ASB SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
c	DRY ON	-		0			FILL: Silty clay, medium to high plasticity, brown, trace of roots, ash	MC>PL			GRASS COVER
	ION		N = 7 2,3,4	- - -		СН	and fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, orange brown and light brown, trace of roots and fine to medium grained ironstone gravel.				- RESIDUAL - -
				-		-	SHALE: grey.	DW	VL-L		VERY LOW TO LOW - 'TC' BIT RESISTANCE
Ī				-		1	END OF BOREHOLE AT 1.5m				-
				2							-
				-							-
				-							-
				-							-
				3 –							_
				-							-
				-							-
				- 4 -							-
				-							-
				-							-
				-							-
				5 -							_
				-							-
				-							-
				6 -							_
				-							-
IGHT				-							-
COPYRIGHT				-							

ENVIRONMENTAL LOG

Borehole No. 33 1/1

Client:	AUSBAO P	YMBLE PT	′ LTD									
Project:	PROPOSE	PROPOSED RESIDENTIAL DEVELOPMENT										
Location:	1,1A,3 & 5	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW										
Job No. E24	192K	Method: HAND AUGER					R.L. Surface: N/A					
Date: 30-4-1	5				D	atum:						
		Log	ged/Checked by: G.F./A.K.									
Groundwater Record ES ASB SAL SAL	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks					
DRY ON COMPLET- ION	0		FILL: Silty sand, fine to medium grained, brown, trace of roots and clay <u>nodules.</u> FILL: Silty clay, medium plasticity,	D MC>PL			WOODCHIPS - COVER					
	1-	CL-CH	brown, trace of ash, root fibres and fine to medium grained ironstone gravel. SILTY CLAY: medium to high plasticity, brown, with ash, trace of	MC>PL			- POSSIBLY FILL					
			plasticity, brown, with ash, trace of roots. SILTY CLAY: high plasticity, light brown and orange brown, trace of fine to medium grained ironstone gravel. END OF BOREHOLE AT 1.3m									

ENVIRONMENTAL LOG

Borehole No. 34 1/1

	Clier	nt:		AUSB	AUSBAO PYMBLE PTY LTD								
	Proje	ect:		PROF	POSE	D RES	IDEN	TIAL DEVELOPMENT					
	Loca	tion	:	1,1A,3	3&5/	AVON	ROAD	O AND 4 & 8 BEECHWORTH	ROAD, F	PYMB	LE, NSV	V	
Γ	Job	No.	E24′	192K	K Method: HAND AUGER					R.L. Surface: N/A			
	Date	: 30	-4-15	5						D	atum:		
							Logo	jed/Checked by: G.F./A.K.	1				
	Groundwater Record	ES ASS ASR SAMPLES	SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
c	DRY ON				0	XX		FILL: Clayey sand, fine to medium \neg grained, dark brown, trace of roots. \checkmark	M			GRASS COVER	
	ION				=		СН	SILTY CLAY: high plasticity, orange, brown and light brown, trace of roots.	MC>PL			RESIDUAL	
ŀ					_			END OF BOREHOLE AT 0.7m				-	
					1 —							_	
					-							-	
					-							-	
					-							-	
					2 -							-	
					-							-	
					-							-	
					-							-	
					3 -							-	
					-							-	
					-							-	
					-							-	
					4 -							-	
					-							-	
					-								
					-							-	
					5 -							-	
					-							-	
					-							-	
					6							-	
					-							-	
⊢					-							-	
COPYRIGHT					-							-	
COP COP					7_							_	

ENVIRONMENTAL LOG

Borehole No. 35 1/1

Client:	AUSBAO PYMBLE PTY LTD PROPOSED RESIDENTIAL DEVELOPMENT								
Project:	PROPOSE	D RESID	ENTIAL DEV	ELOPMENT					
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW								
Job No. E24		N	lethod: SPIF JK30			R.L. Surface: N/A			
Date: 1-5-15						D	atum:		
		L	.ogged/Checi	ked by: G.F./A.K.					
Groundwater Record ES ASS SAL	Field Tests Depth (m)	Graphic Log	Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPLET- ION	0		FILL: Silty of plasticity, b and fine to	clay, medium to high rown, trace of roots, ash medium grained ironstone	MC>PL			VINE COVER	
	N = 5 2,2,3		brown and	Y: high plasticity, orange light brown, trace of roots medium grained ironstone	MC>PL			RESIDUAL	
			- SHALE: lig	ht grey. DREHOLE AT 1.5m	DW	VL		VERY LOW 'TC' BIT	
COPYRIGHT	2 - 3 - 4 - 5 - 6 -								

ENVIRONMENTAL LOG

Borehole No. 36 1/1

Client:	AUSBAO P	YMBLE	PTY LT	D						
Project:	PROPOSE	D RESID	ENTIAL	L DEVELOPMENT						
Location:	1,1A,3 & 5 AVON ROAD AND 4 & 8 BEECHWORTH ROAD, PYMBLE, NSW									
Job No. E24 Date: 1-5-15				: SPIRAL AUGER JK300		R.L. Surface: N/A Datum:				
	Logged/Checked by: G.F./A.K.									
Groundwater Record <u>ES</u> ASB SAMPLES	Tecord ASS SAL ASS SAL Field T Graphii Graphii			DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
DRY ON COMPLET- ION	0		pla	L: Gravelly silty clay, medium asticity, brown, orange brown and ey, fine to coarse grained shale and	MC>PL			GRASS COVER		
			- \iroi ast SH	nstone gravel, trace of roots and /	DW	VL	-	VERY LOW 'TC' BIT RESISTANCE		
CopyRight			EN	ID OF BOREHOLE AT 1.0						

EXPLANATORY NOTES – ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

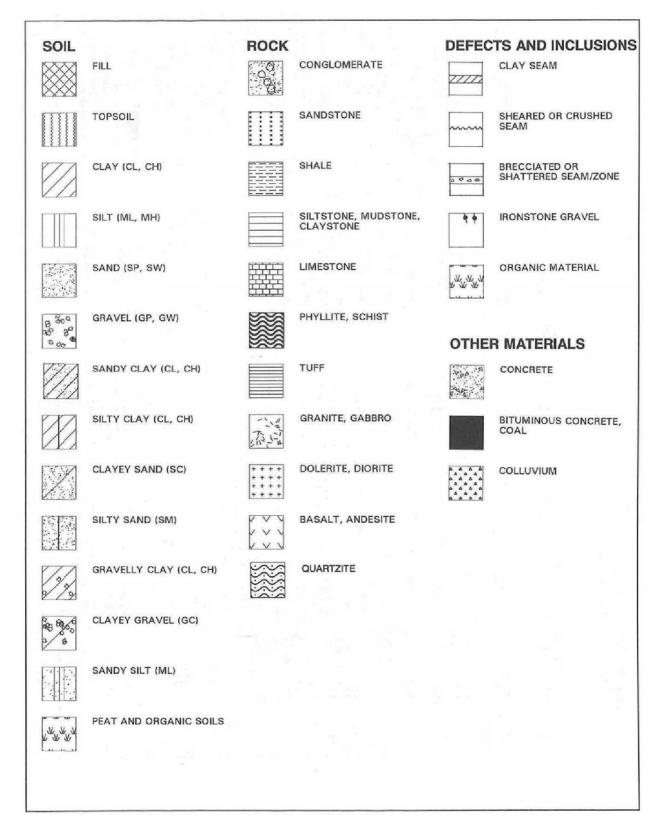
More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING


Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

(Excluding parti	icles larger t	fication Proceed than 75 μ m and ated weights)		ons on	Group Symbols	Typical Names	Information Required for Describing Soils		Laboratory Classification Criteria		
	coarsc than ze	Clean gravels (little or no fines)	Wide range i	in grain size at of all interme		GW	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand	fractions as given under field identification Determine percentages of gravel and sand from grain size curve Depending on percentage of fines (fraction smaller than 75 µm sieve size) coarse grained soils are classified as follows: Less than 5% More than 12% GW, GP, SW, SC More than 12% Borderline cases requiring use of 5% to 12%	$C_{\rm U} = \frac{D_{60}}{D_{10}} \text{Greater than 4}$ $C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \text{Between 1 and 3}$		
	ivels half of larger teve sti			ly one size or a intermediate		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and hardness of the coarse	angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbols in	angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive	from g smalle sified as	Not meeting all gradation requirements for G
si lis size ^b e)	Gravels More than half of coarso fraction is larger than 4 mm sieve size	s s ciable t of	Nonplastic fi cedures see	ines (for ident ML below)	ification pro-	GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in			on d sand action rre class <i>Y</i> , <i>SP</i> <i>M</i> , <i>SC</i> ases recools	Atterberg limits below Above "A" li "A" line, or PI less with PI betwee than 4 4 and 7 a
ined soils of material is an sieve size ^b naked eye)	More	Gravels with fines (appreciable amount of fines)	Plastic fines (see CL belo	for identificatio ow)	on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	identification gravel and of fines (fra- ined cp. SW 3Nderline cas dual symbo	Atterberg limits above "A" line, with PI greater than 7 dual symbols		
Coarse-grained soils e than half of materia r than 75 μ m sieve si : visible to naked eye)	ands half of coarse s smaller than sieve size	Clean sands (little or no fines)		n grain sizes ar of all interme		S₩	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20% hard, angular gravel par-	under field idd centages of g percentage of s% GM carse grain s% GM d d	$C_{U} = \frac{D_{60}}{D_{10}} \qquad \text{Greater than 6}$ $C_{C} = \frac{(D_{20})^{2}}{D_{10} \times D_{60}} \qquad \text{Between 1 and 3}$		
C(More t <i>larger</i> particle v	nds half of smalle ieve si	Clea		ly one size or a intermediate		SP	Poorly graded sands, gravelly sands, little or no fines	ticles 12 mm maximum size: rounded and subangular sand grains coarse to fine, about	given un ne percei ing on pe ve size) c t than 5% to 12%	Not meeting all gradation requirements for S		
smallest p	Sa re than ction is 4 mm 5	Sands with fines (appreciable fines)		nes (for ident see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place;	ons as gi ttermine curve pending pending Less th More 5% to	Atterberg limits below "A" line or P/ less than 5 borderline caas		
t the sr	More 1 fractio	Sand fi (appro amou	Plastic fines (f	for identificatio ow)	n procedures,	sc	Clayey sands, poorly graded sand-clay mixtures	alluvial sand; (SM)	Deterr Deterr Dependent MM	Atterberg limits below "A" line with PI greater than 7		
pon	Identification I	ion Procedures on Fraction Smaller than 380 µm Sieve Size						2	the			
smaller sieve size is a	\$		Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				50	soils at equal liquid limit		
a ize	Silts and clays liquid limit less than 50		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or claycy fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	with increa	and dry strength increase		
Grained soil f of materia 5 μm sieve s (The 75 μ	Silte		Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	05 Plasticity 07 05 05 05 05 05 05 05 05 05 05 05 05 05			
			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	3 10 cl-ML	OL MH		
Fin ore than ha than	l clays limit than		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	mation on structure, stratifica- tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		20 30 40 50 60 70 80 90 100		
Mo	Silts and liquid li greater t	8	High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:		Liquid limit Plasticity chart		
	Silt liv 8re		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of fine sand; numerous vertical	for laborat	tory classification of fine grained soils		
Hi	ghly Organic So	oils		tified by col and frequent		Pt	Peat and other highly organic soils	root holes; firm and dry in place; locss; (ML)				

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

LOG COLUMN	SYMBOL	DEFINITION
		Standing water level. Time delay following completion of drilling may be shown.
Groundwater Record	- C -	Extent of borehole collapse shortly after drilling.
		Groundwater seepage into borehole or excavation noted during drilling or excavation.
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos screening. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual show blows per 150mm penetration. 'R' as noted below.
Field Tests	Nc = 5 3 R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60 degree solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.
	VNS = 25	Vane shear reading in kPa of Undrained Shear Strength.
	PID = 100	Photoionisation detector reading in ppm (Soil sample heads pace test).
Moisture (Cohesive Soils)	MC>PL MC≈PL MC <pl< td=""><td>Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.</td></pl<>	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit.
(Cohesionless)	D M W	 DRY – Runs freely through fingers. MOIST – Does not run freely but no free water visible on soil surface. WET – Free water visible on soil surface.
Strength (Consistency) Cohesive Soils	VS S F St VSt H ()	VERY SOFT- Unconfined compressive strength less than 25kPaSOFT- Unconfined compressive strength 25-5 0kPaFIRM- Unconfined compressive strength 50-1 00kPaSTIFF- Unconfined compressive strength 100- 200kPaVERY STIFF- Unconfined compressive strength 200- 400kPaHARD- Unconfined compressive strength greater than 400kPaBracketed symbol indicates estimated consistency based o n tactile examination or other tests.
Density Index/ Relative Density (Cohesionless	VL	Density Index (ID) Range (%)SPT ' N' Value Range (Blows/300mm)Very Loose<15
(Conesioniess Soils)	L MD D VD ()	Loose15-354-10Medium Dense35-6510-30Dense65-8530-50Very Dense>85>50Bracketed symbol indicates estimated density based on ease of drilling or other tests.
Hand Penetrometer Readings	300 250	Numbers indicate individual test results in kPa on representative undisturbed material unless noted otherwise
Remarks	'V' bit	Hardened steel 'V' shaped bit.
	'TC' bit	Tungsten carbide wing bit.
	T ₆₀	Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers.

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	ls (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL	0.00	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	м	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	VH	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

g Plane Parting eam	Defect orientations measured relative to the normal to
aam	
calli	(i.e. relative to horizontal for vertical holes)
iting	
h	
ained	
nely Weathered Seam	
ed Seam	
ess of defect in millimetres	
 	n ained ely Weathered Seam d Seam

Appendix B: Laboratory Report/s & COC Documents

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

127448

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Goeff Fletcher

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E24192K, Pymble

67 Soils, 3 waters, 1 Material 5/5/2015 / 5/5/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 12/05/15
 / 11/05/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Client Reference: E24192K, Pymble

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0.15
Date Sampled		1/05/2015	1/05/2015	1/05/2015	1/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C $_{10}$ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	93	91	97	104	102

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-14
Your Reference		BH5	BH8	BH8	BH9	BH9
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0.5-0.75
Date Sampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	94	83	95	97

Client Reference: E

E24192K, Pymble

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-15	127448-18	127448-20	127448-22	127448-23
Your Reference		BH9	BH13	BH14	BH18	BH18
Depth		1.7-1.95	0-0.3	0-0.2	0-0.1	0.3-0.6
Date Sampled		1/05/2015	30/04/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	107	95	94	93	107
vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	127448-24	127448-26	127448-27	127448-30	127448-31
Your Reference		BH19	BH20	BH20	BH21	BH21
Depth		0-0.2	0-0.2	0.3-0.5	0-0.2	0.3-0.5
DateSampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	1	<1	<1	<1	<1
	1	1				

Client Reference:

E24192K, Pymble

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-32	127448-33	127448-34	127448-35	127448-36
Your Reference		BH22	BH22	BH23	BH23	BH24
Depth		0-0.3	0.5-0.7	0-0.3	0.6-0.9	0-0.3
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	94	87	104	102
vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	127448-37	127448-38	127448-39	127448-41	127448-42
Your Reference	00015	127440-37 BH24	127440-30 BH25	127446-39 BH25	127446-41 BH26	127446-42 BH26
Depth		0.5-0.6	0-0.15	0.15-0.25	0-0.2	0.2-0.5
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	91	94	88	99

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-43	127448-44	127448-45	127448-46	127448-47
Your Reference		BH27	BH27	BH28	BH28	BH31
Depth		0-0.3	0.5-0.7	0-0.2	0.3-0.5	0-0.2
Date Sampled		30/04/2015	30/04/2015	5/05/2015	5/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	105	87	98	90
						Γ
vTRH(C6-C10)/BTEXN in Soil Our Reference:	UNITS	127448-50	127448-53	127448-54	127448-55	127448-56
Your Reference	00013	BH32	BH33	BH33	BH33	BH33
Depth		0-0.2	0-0.2	0.3-0.5	0.6-0.9	1-1.2
Date Sampled		1/05/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	88	98	99	102

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	127448-57	127448-58	127448-59	127448-62	127448-63
Your Reference		BH34	BH34	BH35	BH36	BH36
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0.5-0.7
Date Sampled		30/04/2015	30/04/2015	1/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	99	95	98	105

vTRH(C6-C10)/BTEXN in Soil				
Our Reference:	UNITS	127448-64	127448-65	127448-67
Your Reference		Dup2	Dup3	TBS
Depth		-	-	-
Date Sampled		30/04/2015	1/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015
TRHC6 - C9	mg/kg	<25	<25	[NA]
TRHC6 - C10	mg/kg	<25	<25	[NA]
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	101	96	107

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0.15
Date Sampled		1/05/2015	1/05/2015	1/05/2015	1/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	320	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	250	<100
TRH>C34-C40	mg/kg	<100	<100	<100	380	<100
Surrogate o-Terphenyl	%	69	80	83	82	80
svTRH (C10-C40) in Soil						

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-14
Your Reference		BH5	BH8	BH8	BH9	BH9
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0.5-0.75
Date Sampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	240	<100	<100	120	<100
TRHC29 - C36	mg/kg	200	<100	<100	680	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	400	<100	<100	590	<100
TRH>C34-C40	mg/kg	130	<100	<100	750	<100
Surrogate o-Terphenyl	%	86	83	82	83	80

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-15	127448-18	127448-20	127448-22	127448-23
Your Reference		BH9	BH13	BH14	BH18	BH18
Depth		1.7-1.95	0-0.3	0-0.2	0-0.1	0.3-0.6
Date Sampled		1/05/2015	30/04/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	81	83	82	83	85

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-24	127448-26	127448-27	127448-30	127448-31
Your Reference		BH19	BH20	BH20	BH21	BH21
Depth		0-0.2	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Date Sampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015	07/05/2015	07/05/2015	07/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	81	82	83	84	82

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-32	127448-33	127448-34	127448-35	127448-36
Your Reference		BH22	BH22	BH23	BH23	BH24
Depth		0-0.3	0.5-0.7	0-0.3	0.6-0.9	0-0.3
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	83	83	81	82	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-37	127448-38	127448-39	127448-41	127448-42
Your Reference		BH24	BH25	BH25	BH26	BH26
Depth		0.5-0.6	0-0.15	0.15-0.25	0-0.2	0.2-0.5
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	81	78	81	82	82

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-43	127448-44	127448-45	127448-46	127448-47
Your Reference		BH27	BH27	BH28	BH28	BH31
Depth		0-0.3	0.5-0.7	0-0.2	0.3-0.5	0-0.2
Date Sampled		30/04/2015	30/04/2015	5/05/2015	5/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	78	85	81	80	80

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-50	127448-53	127448-54	127448-55	127448-56
Your Reference		BH32	BH33	BH33	BH33	BH33
Depth		0-0.2	0-0.2	0.3-0.5	0.6-0.9	1-1.2
Date Sampled		1/05/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	06/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	150	100	<100	<100
TRHC 29 - C36	mg/kg	<100	220	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	55	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	55	<50	<50
TRH>C16-C34	mg/kg	<100	280	120	<100	<100
TRH>C34-C40	mg/kg	<100	130	<100	<100	<100
Surrogate o-Terphenyl	%	88	87	80	83	78

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	127448-57	127448-58	127448-59	127448-62	127448-63
Your Reference		BH34	BH34	BH35	BH36	BH36
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0.5-0.7
Date Sampled		30/04/2015	30/04/2015	1/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	110	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	76	81	82	76

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	127448-64	127448-65
Your Reference		Dup2	Dup3
Depth		-	-
Date Sampled		30/04/2015	1/05/2015
Type of sample		Soil	Soil
Date extracted	-	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015
TRHC 10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	81	89

PAHs in Soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0.15
Date Sampled Type of sample		1/05/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	4/05/2015 Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	0.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	0.070	0.86	NIL(+)VE	0.12	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	96	100	100	98

PAHs in Soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-14
Your Reference		BH5	BH8	BH8	BH9	BH9
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0.5-0.75
Date Sampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	1.2	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	2.0	<0.1	<0.1	0.2	0.4
Anthracene	mg/kg	1.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	13	<0.1	<0.1	0.2	0.9
Pyrene	mg/kg	14	<0.1	<0.1	0.2	0.9
Benzo(a)anthracene	mg/kg	8.4	<0.1	<0.1	0.1	0.4
Chrysene	mg/kg	7.6	<0.1	<0.1	0.2	0.4
Benzo(b,j+k)fluoranthene	mg/kg	13	<0.2	<0.2	<0.2	0.7
Benzo(a)pyrene	mg/kg	9.1	0.06	<0.05	0.1	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	4.6	<0.1	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	1.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	3.9	<0.1	<0.1	0.1	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	13	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	13	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	13	<0.5	<0.5	<0.5	0.7
Total Positive PAHs	mg/kg	79	0.060	NIL(+)VE	1.1	4.7
Surrogate p-Terphenyl-d14	%	101	101	100	102	103

PAHs in Soil						
Our Reference:	UNITS	127448-15	127448-18	127448-20	127448-22	127448-23
Your Reference		BH9	BH13	BH14	BH18	BH18
Depth		1.7-1.95	0-0.3	0-0.2	0-0.1	0.3-0.6
Date Sampled		1/05/2015	30/04/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.5	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	1.4	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.67	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	7.6	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98	99	100	95	100

E24192K,	Pymble
----------	--------

PAHs in Soil						
Our Reference:	UNITS	127448-24	127448-26	127448-27	127448-30	127448-31
Your Reference		BH19	BH20	BH20	BH21	BH21
Depth		0-0.2	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Date Sampled Type of sample		5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.05	NIL(+)VE
Surrogate p-Terphenyl-d14	%	99	100	102	102	98

PAHs in Soil						
Our Reference:	UNITS	127448-32	127448-33	127448-34	127448-35	127448-36
Your Reference		BH22	BH22	BH23	BH23	BH24
Depth		0-0.3	0.5-0.7	0-0.3	0.6-0.9	0-0.3
Date Sampled Type of sample		5/05/2015 Soil	5/05/2015 Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	6/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.06	<0.05	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	0.28	NIL(+)VE	0.28
Surrogate p-Terphenyl-d14	%	103	98	99	101	96

PAHs in Soil						
Our Reference:	UNITS	127448-37	127448-38	127448-39	127448-41	127448-42
Your Reference		BH24	BH25	BH25	BH26	BH26
Depth		0.5-0.6	0-0.15	0.15-0.25	0-0.2	0.2-0.5
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.3	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.07	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	0.31	1.3	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98	91	96	100	99

PAHs in Soil						
Our Reference:	UNITS	127448-43	127448-44	127448-45	127448-46	127448-47
Your Reference		BH27	BH27	BH28	BH28	BH31
Depth		0-0.3	0.5-0.7	0-0.2	0.3-0.5	0-0.2
Date Sampled		30/04/2015	30/04/2015	5/05/2015	5/05/2015	1/05/2015
Type of sample	_	Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.31
Surrogate p-Terphenyl-d14	%	95	101	99	97	64

PAHs in Soil						
Our Reference:	UNITS	127448-50	127448-53	127448-54	127448-55	127448-56
Your Reference		BH32	BH33	BH33	BH33	BH33
Depth		0-0.2	0-0.2	0.3-0.5	0.6-0.9	1-1.2
Date Sampled Type of sample		1/05/2015 Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.3	0.4	0.2	<0.1	<0.1
Pyrene	mg/kg	0.3	0.4	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	0.2	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	0.2	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	0.4	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	0.2	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	1.8	2.4	0.60	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	124	102	104	99	95

PAHs in Soil						
Our Reference:	UNITS	127448-57	127448-58	127448-59	127448-62	127448-63
Your Reference		BH34	BH34	BH35	BH36	BH36
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0.5-0.7
Date Sampled		30/04/2015	30/04/2015	1/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.7	<0.1	0.6	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.5	<0.1	1.4	0.1	<0.1
Pyrene	mg/kg	1.3	<0.1	1.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.7	<0.1	0.6	<0.1	<0.1
Chrysene	mg/kg	0.7	<0.1	0.6	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	1	<0.2	1	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.76	<0.05	0.60	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	<0.1	0.3	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	<0.1	0.4	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.0	<0.5	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.0	<0.5	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.1	<0.5	0.9	<0.5	<0.5
Total Positive PAHs	mg/kg	8.0	NIL(+)VE	6.8	0.10	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	98	100	105	94

PAHs in Soil			
Our Reference:	UNITS	127448-64	127448-65
Your Reference		Dup2	Dup3
Depth		-	-
DateSampled		30/04/2015	1/05/2015
Type of sample		Soil	Soil
Date extracted	-	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.8
Anthracene	mg/kg	<0.1	0.1
Fluoranthene	mg/kg	<0.1	1.4
Pyrene	mg/kg	<0.1	1.3
Benzo(a)anthracene	mg/kg	<0.1	0.6
Chrysene	mg/kg	<0.1	0.6
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	1
Benzo(a)pyrene	mg/kg	0.05	0.61
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.8
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.9
Total Positive PAHs	mg/kg	0.05	7.1
Surrogate p-Terphenyl-d14	%	106	103

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0.15
Date Sampled		1/05/2015	1/05/2015	1/05/2015	1/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	85	86	86	84

E24192K, Pymble	
-----------------	--

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-18
Your Reference		BH5	BH8	BH8	BH9	BH13
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0-0.3
Date Sampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	85	88	89	86

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-20	127448-22	127448-24	127448-26	127448-30
Your Reference		BH14	BH18	BH19	BH20	BH21
Depth		0-0.2	0-0.1	0-0.2	0-0.2	0-0.2
DateSampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	92	86	87	88

E24192K, Pymble)
-----------------	---

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-31	127448-32	127448-34	127448-36	127448-37
Your Reference		BH21	BH22	BH23	BH24	BH24
Depth		0.3-0.5	0-0.3	0-0.3	0-0.3	0.5-0.6
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	87	87	87	88

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-38	127448-41	127448-43	127448-44	127448-45
Your Reference		BH25	BH26	BH27	BH27	BH28
Depth		0-0.15	0-0.2	0-0.3	0.5-0.7	0-0.2
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	2.5	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	88	82	88	86

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-46	127448-47	127448-50	127448-53	127448-57
Your Reference		BH28	BH31	BH32	BH33	BH34
Depth		0.3-0.5	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		5/05/2015	1/05/2015	1/05/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	83	97	94	96

Organochlorine Pesticides in soil						
Our Reference:	UNITS	127448-58	127448-59	127448-62	127448-63	127448-64
Your Reference		BH34	BH35	BH36	BH36	Dup2
Depth		0.3-0.5	0-0.2	0-0.2	0.5-0.7	-
Date Sampled		30/04/2015	1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	90	93	84	102

Organochlorine Pesticides in soil		
Our Reference:	UNITS	127448-65
Your Reference		Dup3
Depth		-
Date Sampled		1/05/2015
Type of sample		Soil
Date extracted	-	06/05/2015
Date analysed	-	07/05/2015
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	99

Organophosphorus Pesticides						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1 0-0.2	BH2 0-0.2	BH2	BH3	BH4
Depth Date Sampled		0-0.2 1/05/2015	0-0.2 1/05/2015	0.5-0.8 1/05/2015	0-0.1 1/05/2015	0.05-0.15 4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	85	86	86	84
Organophosphorus Pesticides						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-18
Your Reference		BH5	BH8	BH8	BH9	BH13
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0-0.3
DateSampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	30/04/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/201
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Organophosphorus Pesticides Our Reference:	UNITS	127448-20	127448-22	127448-24	127448-26	127448-3
Your Reference:	01115	127448-20 BH14	127448-22 BH18	127448-24 BH19	127448-26 BH20	127448-3 BH21
Depth		0-0.2	0-0.1	0-0.2	0-0.2	0-0.2
Date Sampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/20 ⁻
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	92	86	87	88
	-					
Organophosphorus Pesticides		107440 04	107440.00	107440.04	107440.00	107440 (
Our Reference: Your Reference	UNITS	127448-31 BH21	127448-32 BH22	127448-34 BH23	127448-36 BH24	127448-3 BH24
Depth		0.3-0.5	0-0.3	0-0.3	0-0.3	0.5-0.6
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/20
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/20
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
		<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	NO.1			1	1
Malathion Parathion	mg/kg mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1

Client Reference: E24192K,

E24192K, Pymble	
-----------------	--

Organophosphorus Pesticides Our Reference:	UNITS	127448-38	127448-41	127448-43	127448-44	127448-45
Your Reference Depth		BH25 0-0.15	BH26 0-0.2	BH27 0-0.3	BH27 0.5-0.7	BH28 0-0.2
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	81	88	82	88	86
Orrenezhoankezue Destisidez						
Organophosphorus Pesticides Our Reference:	UNITS	127448-46	127448-47	127448-50	127448-53	127448-57
Your Reference		BH28	BH31	BH32	BH33	BH34
Depth		0.3-0.5	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled		5/05/2015	1/05/2015	1/05/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	84	83	97	94	96

Organophosphorus Pesticides						
Our Reference:	UNITS	127448-58	127448-59	127448-62	127448-63	127448-64
Your Reference		BH34	BH35	BH36	BH36	Dup2
Depth		0.3-0.5	0-0.2	0-0.2	0.5-0.7	-
Date Sampled		30/04/2015	1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	90	93	84	102

Organophosphorus Pesticides		
Our Reference:	UNITS	127448-65
Your Reference		Dup3
Depth		-
Date Sampled		1/05/2015
Type of sample		Soil
Date extracted	-	06/05/2015
Date analysed	-	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	99

PCBs in Soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth Data Sampled		0-0.2	0-0.2	0.5-0.8	0-0.1 1/05/2015	0.05-0.15
Date Sampled Type of sample		1/05/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	4/05/2015 Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	85	85	86	86	84
~		I				
PCBs in Soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-18
Your Reference		BH5	BH8	BH8	BH9	BH13
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0-0.3
Date Sampled Type of sample		4/05/2015 Soil	4/05/2015 Soil	4/05/2015 Soil	1/05/2015 Soil	30/04/2015 Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	84	85	88	89	86
~	I	I	L	I	L	L
PCBs in Soil						
Our Reference:	UNITS	127448-20	127448-22	127448-24	127448-26	127448-30
Your Reference		BH14	BH18	BH19	BH20	BH21
Depth Dete Complete		0-0.2	0-0.1	0-0.2	0-0.2	0-0.2
Date Sampled Type of sample		5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	85	92	86	87	88

			0 _11, 1 J 11.010			
PCBs in Soil						
Our Reference:	UNITS	127448-31	127448-32	127448-34	127448-36	127448-37
Your Reference		BH21	BH22	BH23	BH24	BH24
Depth		0.3-0.5	0-0.3	0-0.3	0-0.3	0.5-0.6
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	86	87	87	87	88
PCBs in Soil						
Our Reference:	UNITS	127448-38	127448-41	127448-43	127448-44	127448-45
Your Reference		BH25	BH26	BH27	BH27	BH28
Depth		0-0.15	0-0.2	0-0.3	0.5-0.7	0-0.2
DateSampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	81	88	82	88	86
			1		I	
PCBs in Soil		407440.40	407440 17	407440 -0	407440 -0	407440
Our Reference:	UNITS	127448-46	127448-47	127448-50	127448-53	127448-57
Your Reference		BH28	BH31	BH32	BH33	BH34
Depth		0.3-0.5	0-0.2	0-0.2	0-0.2	0-0.2
Date Sampled Type of sample		5/05/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	30/04/2015 Soil	30/04/2015 Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Surrogate TCLMX

%

84

83

97

94

96

PCBs in Soil						
Our Reference:	UNITS	127448-58	127448-59	127448-62	127448-63	127448-64
Your Reference		BH34	BH35	BH36	BH36	Dup2
Depth		0.3-0.5	0-0.2	0-0.2	0.5-0.7	-
Date Sampled		30/04/2015	1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015	07/05/2015	07/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	86	90	93	84	102

PCBs in Soil		
Our Reference:	UNITS	127448-65
Your Reference		Dup3
Depth		-
Date Sampled		1/05/2015
Type of sample		Soil
Date extracted	-	06/05/2015
Date analysed	-	07/05/2015
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Surrogate TCLMX	%	99

Acid Extractable metals in soil						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0
Date Sampled		1/05/2015	1/05/2015	1/05/2015	1/05/2015	4/05/20
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Arsenic	mg/kg	6	4	<4	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.4	<0.4
Chromium	mg/kg	10	10	6	57	13
Copper	mg/kg	13	15	31	33	32
Lead	mg/kg	28	54	24	15	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	5	5	100	7
Zinc	mg/kg	25	58	26	54	22
	0.0					
Acid Extractable metals in soil						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448
Your Reference		BH5	BH8	BH8	BH9	BHS
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0.5-0.
Date Sampled Type of sample		4/05/2015 Soil	4/05/2015 Soil	4/05/2015 Soil	1/05/2015 Soil	1/05/20 Soil
Date digested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Arsenic	mg/kg	5	7	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.5	<0.4
Chromium	mg/kg	10	16	16	65	11
Copper	mg/kg	41	23	20	30	33
Lead	mg/kg	38	48	25	23	64
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	9	7	78	7
Zinc	mg/kg	60	48	33	54	60
Acid Extractable metals in soil						
Our Reference:	UNITS	127448-15	127448-18	127448-20	127448-22	127448
Your Reference		BH9	BH13	BH14	BH18	BH18
Depth		1.7-1.95	0-0.3	0-0.2	0-0.1	0.3-0
Date Sampled Type of sample		1/05/2015 Soil	30/04/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/20 Soil
Date digested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/2
Arsenic	mg/kg	8	6	8	7	9
Cadmium	mg/kg	0.4	0.5	<0.4	<0.4	<0.4
Chromium	mg/kg	14	18	15	14	15
Copper	mg/kg	37	24	66	22	28
Lead	mg/kg	120	52	52	51	22
Mercury	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Nickel	mg/kg	8	6	6	8	9
Zinc	mg/kg	130	47	53	80	51

Client Reference: E24192K,

E24192K, Pymble	
-----------------	--

Acid Extractable metals in soil						
Our Reference:	UNITS	127448-24	127448-26	127448-27	127448-30	127448-31
Your Reference		BH19	BH20	BH20	BH21	BH21
Depth		0-0.2	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Date Sampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample	_	Soil	Soil	Soil	Soil	Soil
Datedigested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	mg/kg	7	28	9	11	6
Cadmium	mg/kg	<0.4	0.4	<0.4	0.4	<0.4
Chromium	mg/kg	14	16	15	14	15
Copper	mg/kg	14	25	22	22	13
Lead	mg/kg	27	38	21	59	19
Mercury	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Nickel	mg/kg	8	10	9	15	7
Zinc	mg/kg	57	68	34	73	20
Acid Extractable metals in soil						
Our Reference:	UNITS	127448-32	127448-33	127448-34	127448-35	127448-3
Your Reference		BH22	BH22	BH23	BH23	BH24
Depth Date Sampled		0-0.3 5/05/2015	0.5-0.7 5/05/2015	0-0.3 30/04/2015	0.6-0.9 30/04/2015	0-0.3 30/04/201
Type of sample		Soil	Soil	Soil	Soil	So/04/201 Soil
Date digested		06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
-	-					
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	mg/kg	5	7	5	5	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	12	12	12	11
Copper	mg/kg	20	14	21	28	21
Lead	mg/kg	38	15	88	46	57
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	5	6	4	6
Zinc	mg/kg	46	25	64	38	71
						
Acid Extractable metals in soil Our Reference:	UNITS	127448-37	127448-38	107440.00	127448-41	127448-4
Your Reference:		127448-37 BH24	127448-38 BH25	127448-39 BH25	127448-41 BH26	127448-4. BH26
Depth		0.5-0.6	0-0.15	0.15-0.25	0-0.2	0.2-0.5
Date Sampled		30/04/2015	30/04/2015	30/04/2015	30/04/2015	30/04/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	mg/kg	5	<4	6	6	5
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4	<0.4
Chromium	mg/kg	7	44	28	33	17
Copper	mg/kg	22	12	16	20	23
		22	12	46	130	
Lead	mg/kg					63
Mercury	mg/kg	<0.1	1.1	0.3	0.1	<0.1
Nickel	mg/kg	2	3	7	4	5
Zinc	mg/kg	17	55	29	49	33

Acid Extractable metals in soil						
Our Reference:	UNITS	127448-43	127448-44	127448-45	127448-46	127448-47
Your Reference		BH27	BH27	BH28	BH28	BH31
Depth		0-0.3	0.5-0.7	0-0.2	0.3-0.5	0-0.2
Date Sampled		30/04/2015	30/04/2015	5/05/2015	5/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	mg/kg	7	7	6	6	10
Cadmium	mg/kg	0.6	<0.4	0.4	<0.4	0.7
Chromium	mg/kg	19	14	13	15	19
Copper	mg/kg	65	34	17	16	69
Lead	mg/kg	180	28	26	17	640
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Nickel	mg/kg	7	2	7	8	9
Zinc	mg/kg	, 180	15	32	18	380
	iiig/kg	100	15	52	10	300
Acid Extractable metals in soil						
Our Reference:	UNITS	127448-50	127448-53	127448-54	127448-55	127448-5
Your Reference		BH32	BH33	BH33	BH33	BH33
Depth		0-0.2	0-0.2	0.3-0.5	0.6-0.9	1-1.2
Date Sampled		1/05/2015	30/04/2015	30/04/2015	30/04/2015	30/04/201
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	mg/kg	6	7	5	5	6
Cadmium	mg/kg	<0.4	0.6	<0.4	<0.4	<0.4
Chromium	mg/kg	13	27	15	15	15
Copper	mg/kg	25	120	30	33	37
Lead	mg/kg	79	50	31	22	26
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	7	14	6	7	5
Zinc	mg/kg	60	190	33	21	22
		I	I		I	·
Acid Extractable metals in soil						
Our Reference:	UNITS	127448-57	127448-58	127448-59	127448-62	127448-6
Your Reference		BH34	BH34	BH35	BH36	BH36
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0.5-0.7
Date Sampled Type of sample		30/04/2015 Soil	30/04/2015 Soil	1/05/2015 Soil	1/05/2015 Soil	1/05/201 Soil
Date digested		06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Date analysed	-	06/05/2015	06/05/2015	06/05/2015	06/05/2015	06/05/201
Arsenic	-	4	11	5	6	8
	mg/kg					
Cadmium	mg/kg	<0.4	<0.4	0.4	<0.4	<0.4
Chromium	mg/kg	13	12	16	11	6
Copper	mg/kg	24	46	25	32	32
Lead	mg/kg	61	26	120	110	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	3	6	3	3
Zinc	mg/kg	50	16	140	55	14

Acid Extractable metals in soil			
Our Reference:	UNITS	127448-64	127448-65
Your Reference		Dup2	Dup3
Depth		-	-
Date Sampled		30/04/2015	1/05/2015
Type of sample		Soil	Soil
Datedigested	-	06/05/2015	06/05/2015
Date analysed	-	06/05/2015	06/05/2015
Arsenic	mg/kg	5	4
Cadmium	mg/kg	<0.4	0.4
Chromium	mg/kg	10	14
Copper	mg/kg	17	25
Lead	mg/kg	53	130
Mercury	mg/kg	<0.1	0.1
Nickel	mg/kg	5	6
Zinc	mg/kg	63	150

Client Reference: E24

			-			
Moisture						
Our Reference:	UNITS	127448-1	127448-3	127448-4	127448-5	127448-8
Your Reference		BH1	BH2	BH2	BH3	BH4
Depth		0-0.2	0-0.2	0.5-0.8	0-0.1	0.05-0.15
Date Sampled		1/05/2015	1/05/2015	1/05/2015	1/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Moisture	%	22	21	14	13	20
Moisture						
Our Reference:	UNITS	127448-10	127448-11	127448-12	127448-13	127448-14
Your Reference		BH5	BH8	BH8	BH9	BH9
Depth		0-0.3	0-0.3	0.5-0.8	0-0.3	0.5-0.75
DateSampled		4/05/2015	4/05/2015	4/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Moisture	%	16	25	23	10	19
Moisture						
Our Reference:	UNITS	127448-15	127448-18	127448-20	127448-22	127448-23
Your Reference		BH9	BH13	BH14	BH18	BH18
Depth		1.7-1.95	0-0.3	0-0.2	0-0.1	0.3-0.6
Date Sampled		1/05/2015	30/04/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Moisture	%	24	26	34	25	20
					1	
Moisture						
Our Reference:	UNITS	127448-24	127448-26	127448-27	127448-30	127448-31
Your Reference		BH19	BH20	BH20	BH21	BH21
Depth		0-0.2	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Date Sampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	5/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Moisture	%	27	26	21	27	19
		1				
Moisture						
Our Reference:	UNITS	127448-32	127448-33	127448-34	127448-35	127448-36
Your Reference		BH22	BH22	BH23	BH23	BH24
Depth		0-0.3	0.5-0.7	0-0.3	0.6-0.9	0-0.3
Date Sampled		5/05/2015	5/05/2015	30/04/2015	30/04/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
Moisture	%	27	13	24	17	19
	,.		L	·		

-	0/05/2015				
	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
	30/04/2015 Soil	30/04/2015 Soil	Soil	Soil	Soil
					0.5-0.7 1/05/2015
					BH36
UNITS	127448-57	127448-58	127448-59		127448-63
%	21	28	20	30	21
-					
_					7/05/2015
	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
	Soil	Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil
					1-1.2 30/04/2015
	-				BH33 1-1.2
UNITS			127448-54	127448-55	127448-56
%					31
-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
	Soil	Soil	Soil	Soil	Soil
	30/04/2015	30/04/2015	5/05/2015	5/05/2015	1/05/2015
			-	_	0-0.2
UNITS					127448-47 BH31
	407440 40	407440 44	407440 45	407440.40	407440.47
		1		-	
%	20	29	21	23	22
-	7/05/2015	7/05/2015	7/05/2015	7/05/2015	7/05/2015
-	6/05/2015	6/05/2015	6/05/2015	6/05/2015	6/05/2015
	Soil	Soil	Soil	Soil	Soil
	30/04/2015	30/04/2015	30/04/2015	30/04/2015	30/04/2015
	0.5-0.6	0-0.15	0.15-0.25	0-0.2	0.2-0.5
	BH24	BH25	BH25	BH26	BH26
UNITS				_	127448-42 BH26
		LINC BH24 BH24 0.5-0.6 30/04/2015 Soil 7/05/2015 - 6/05/2015 % 20 UNITS 127448-43 BH27 0-0.3 0.00/04/2015 Soil - 6/05/2015 % 20 UNITS 127448-43 BH27 0-0.3 0/0.15 Soil - 6/05/2015 % 27 UNITS 127448-50 BH32 0-0.2 1/05/2015 Soil - 6/05/2015 % 27 UNITS 127448-50 BH32 0-0.2 1/05/2015 Soil - 6/05/2015 % 27 UNITS 127448-57 BH34 0-0.2 30/04/2015 27	UNITS 127448-53 0.5-0.6 30/04/2015 Soil BH24 0.5-0.6 30/04/2015 Soil BH25 0-0.15 30/04/2015 Soil - 6/05/2015 6/05/2015 - 7/05/2015 7/05/2015 - 7/05/2015 7/05/2015 - 7/05/2015 7/05/2015 - 0.0.3 127448-44 BH27 0-0.3 0.5-0.7 0.00.3 0.0/4/2015 Soil - 6/05/2015 6/05/2015 - 6/05/2015 6/05/2015 - 6/05/2015 0.0.2 - 127448-50 127448-53 BH32 0-0.2 0/0.2 - 6/05/2015 Soil - 127448-50 127448-53 BH32 0-0.2 30/04/2015 - 127448-50 BH33 - 6/05/2015 Soil - 6/05/2015 Soil - 0/0.2 30/04/2015 Soil 27 28 - 127448-57 BH	Image: Note of the section o	Line BH24 BH25 BH25 BH25 BH26 BH26 0.5-0.6 30/04/2015 30/04/2015 30/04/2015 30/04/2015 30/04/2015 Soil Soil Soil Soil Soil Soil Soil - 6/05/2015 6/05/2015 6/05/2015 6/05/2015 7/05/2015 - 7/05/2015 7/05/2015 7/05/2015 7/05/2015 7/05/2015 % 20 29 21 23 UNITS 127448-43 BH27 BH27 BH28 0.3-0.5 30/04/2015 30/04/2015 Soil Soil Soil Soil Soil

WOIsture			
Our Reference:	UNITS	127448-64	127448-65
Your Reference		Dup2	Dup3
Depth		-	-
Date Sampled		30/04/2015	1/05/2015
Type of sample		Soil	Soil
Date prepared	-	6/05/2015	6/05/2015
Date analysed	-	7/05/2015	7/05/2015
Moisture	%	18	29

Г						
Asbestos ID - soils						
Our Reference:	UNITS	127448-1	127448-3	127448-5	127448-8	127448-10
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth		0-0.2	0-0.2	0-0.1	0.05-0.15	0-0.3
Date Sampled		1/05/2015	1/05/2015	1/05/2015	4/05/2015	4/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 45g	Approx 40g	Approx 15g	Approx 50g	Approx 50g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	127448-11	127448-13	127448-14	127448-15	127448-18
Your Reference		BH8	BH9	BH9	BH9	BH13
Depth		0-0.3	0-0.3	0.5-0.75	1.7-1.95	0-0.3
Date Sampled		4/05/2015	1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date analysed	_	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 40g	Approx 20g	Approx 30g	Approx 35g	Approx 30g
Sample Description	3	Brown	Brown	Brown	Brown	Brown
Sample Description	-	coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils Our Reference: Your Reference Depth	UNITS 	127448-20 BH14 0-0.2	127448-22 BH18 0-0.1	127448-23 BH18 0.3-0.6	127448-24 BH19 0-0.2	127448-26 BH20 0-0.2
Date Sampled Type of sample		5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil	5/05/2015 Soil
Date analysed	-	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 30g	Approx 30g	Approx 45g	Approx 15g	Approx 30g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	127448-27	127448-30	127448-32	127448-33	127448-34
Your Reference		BH20	BH21	BH22	BH22	BH23
Depth		0.3-0.5	0-0.2	0-0.3	0.5-0.7	0-0.3
DateSampled		5/05/2015	5/05/2015	5/05/2015	5/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 60g	Approx 30g	Approx 30g	Approx 40g	Approx 30g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils Our Reference:	UNITS	127448-35	127448-36	127448-38	127448-39	107449 44
Your Reference	UNITS	BH23	127440-30 BH24	127440-30 BH25	BH25	127448-41 BH26
		_		_	_	_
Depth		0.6-0.9	0-0.3	0-0.15	0.15-0.25	0-0.2
Date Sampled Type of sample		30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil	30/04/2015 Soil
		301	301	301	301	301
Date analysed	-	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 30g	Approx 40g	Approx 30g	Approx 45g	Approx 30g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	127448-42	127448-43	127448-45	127448-47	127448-50
Your Reference		BH26	BH27	BH28	BH31	BH32
Depth		0.2-0.5	0-0.3	0-0.2	0-0.2	0-0.2
Date Sampled		30/04/2015	30/04/2015	5/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	11/05/2015	11/05/2015 Approx 30g	11/05/2015	11/05/2015 Approx 35g	11/05/2015
Sample mass tested	g	Approx 35g		Approx 40g		Approx 30g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils						
Our Reference:	UNITS	127448-53	127448-54	127448-57	127448-59	127448-62
Your Reference		BH33	BH33	BH34	BH35	BH36
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0-0.2
DateSampled		30/04/2015	30/04/2015	30/04/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Sample mass tested	g	Approx 35g	Approx 40g	Approx 30g	Approx 30g	Approx 40g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Client Reference: E24

BTEX in Water				
Our Reference:	UNITS	127448-68	127448-69	127448-70
Your Reference		FR1	FR2	FR3
Depth		-	-	-
Date Sampled		30/04/2015	1/05/2015	5/05/2015
Type of sample		Water	Water	Water
Date extracted	-	06/05/2015	06/05/2015	06/05/2015
Date analysed	-	07/05/2015	07/05/2015	07/05/2015
Benzene	μg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
o-xylene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	95	99	98
Surrogate toluene-d8	%	92	97	101
Surrogate 4-BFB	%	101	104	105

Client Reference:

Asbestos ID - materials		
Our Reference:	UNITS	127448-71
Your Reference		S1
Depth		-
Date Sampled		4/05/2015
Type of sample		Material
Date analysed	-	11/05/2015
Mass / Dimension of Sample	-	75x40x5mm
Sample Description	-	Brown compressed fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<="" stipulated="" td="" the=""></pql>
	Hence a mid-point between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: E2419

		Cile	nt Referenc	:е: Е	24192K, Pym	eldi		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			6/05/20 15	127448-1	6/05/2015 6/05/2015	LCS-1	6/05/2015
Date analysed	-			6/05/20 15	127448-1	6/05/2015 6/05/2015	LCS-1	6/05/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	127448-1	<25 <25	LCS-1	113%
TRHC6 - C10	mg/kg	25	Org-016	<25	127448-1	<25 <25	LCS-1	113%
Benzene	mg/kg	0.2	Org-016	<0.2	127448-1	<0.2 <0.2	LCS-1	114%
Toluene	mg/kg	0.5	Org-016	<0.5	127448-1	<0.5 <0.5	LCS-1	113%
Ethylbenzene	mg/kg	1	Org-016	<1	127448-1	<1 <1	LCS-1	112%
m+p-xylene	mg/kg	2	Org-016	~2	127448-1	<2 <2	LCS-1	112%
o-Xylene	mg/kg	1	Org-016	<1	127448-1	<1 <1	LCS-1	108%
naphthalene	mg/kg	1	Org-014	<1	127448-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	114	127448-1	93 97 RPD:4	LCS-1	114%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-1	06/05/2015
Date analysed	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-1	06/05/2015
TRHC 10 - C 14	mg/kg	50	Org-003	<50	127448-1	<50 <50	LCS-1	107%
TRHC 15 - C28	mg/kg	100	Org-003	<100	127448-1	<100 <100	LCS-1	109%
TRHC 29 - C36	mg/kg	100	Org-003	<100	127448-1	<100 <100	LCS-1	85%
TRH>C10-C16	mg/kg	50	Org-003	<50	127448-1	<50 <50	LCS-1	107%
TRH>C16-C34	mg/kg	100	Org-003	<100	127448-1	<100 <100	LCS-1	109%
TRH>C34-C40	mg/kg	100	Org-003	<100	127448-1	<100 <100	LCS-1	85%
Surrogate o-Terphenyl	%		Org-003	88	127448-1	69 63 RPD:9	LCS-1	90%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			6/05/20 15	127448-1	6/05/2015 6/05/2015	LCS-1	6/05/2015
Date analysed	-			7/05/20 15	127448-1	6/05/2015 6/05/2015	LCS-1	6/05/2015
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	100%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	107%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	105%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	108%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	111%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	LCS-1	98%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	127448-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	127448-1	0.07 <0.05	LCS-1	116%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	104	127448-1	96 101 RPD:5	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-1	06/05/2015
Date analysed	-			07/05/2 015	127448-1	07/05/2015 07/05/2015	LCS-1	07/05/2015
HCB	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	103%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	103%
Heptachlor	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	98%
delta-BHC	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	104%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	109%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	116%
Dieldrin	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	110%
Endrin	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	115%
pp-DDD	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	127%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	LCS-1	121%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	95	127448-1	85 86 RPD:1	LCS-1	99%

Client Reference:

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-1	06/05/2015
Date analysed	-			07/05/2 015	127448-1	07/05/2015 07/05/2015	LCS-1	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	121%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	97%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	91%
Dimethoate	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	105%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	87%
Malathion	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	90%
Parathion	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	LCS-1	106%
Ronnel	mg/kg	0.1	Org-008	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-008	95	127448-1	85 86 RPD: 1	LCS-1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-1	06/05/2015
Date analysed	-			07/05/2 015	127448-1	07/05/2015 07/05/2015	LCS-1	07/05/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	LCS-1	112%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	127448-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	95	127448-1	85 86 RPD:1	LCS-1	89%

Client Reference: E24192K, Pymble								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Datedigested	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-3	06/05/2015
Date analysed	-			06/05/2 015	127448-1	06/05/2015 06/05/2015	LCS-3	06/05/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	127448-1	6 5 RPD:18	LCS-3	109%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	127448-1	<0.4 <0.4	LCS-3	102%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	127448-1	10 11 RPD:10	LCS-3	104%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	127448-1	13 13 RPD:0	LCS-3	105%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	127448-1	28 31 RPD:10	LCS-3	101%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	127448-1	<0.1 <0.1	LCS-3	99%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	127448-1	5 5 RPD:0	LCS-3	102%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	127448-1	25 28 RPD:11	LCS-3	100%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
BTEX in Water						Base II Duplicate II %RPD		
Date extracted	-			06/05/2 015	[NT]	[NT]	LCS-W1	06/05/2015
Date analysed	-			07/05/2 015	[NT]	[NT]	LCS-W1	07/05/2015
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	104%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	122%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	110%
m+p-xylene	µg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	100%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	112%
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	100	[NT]	[NT]	LCS-W1	107%
Surrogate toluene-d8	%		Org-016	95	[NT]	[NT]	LCS-W1	109%
Surrogate 4-BFB	%		Org-016	103	[NT]	[NT]	LCS-W1	101%
QUALITY CONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	6 [Dup. Sm#		Duplicate Duplicate + %RP	Spike Sm# D	Spike % Reco	very
Date extracted	-	1	27448-18	6/05/2	015 6/05/2015	LCS-2	6/05/2015	
Date analysed	-	1	27448-18		015 6/05/2015	LCS-2	7/05/2015	
TRHC6 - C9	mg/kg		27448-18		<25 <25	LCS-2	102%	
TRHC6 - C10	mg/kę	-	27448-18		<25 <25	LCS-2	102%	
Benzene	mg/k		27448-18		<0.2 <2.5	LCS-2	102 %	
Toluene		-				LCS-2 LCS-2	102%	
	mg/k	-	27448-18		<0.5 <0.5			
Ethylbenzene	mg/kę		27448-18		<1 <1	LCS-2	101%	
m+p-xylene	mg/k	g 1	27448-18		<2 <2	LCS-2	102%	

		Client Reference	e: E24192K, Pymble		
QUALITY CONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
o-Xylene	mg/kg	127448-18	<1 <1	LCS-2	99%
naphthalene	mg/kg	127448-18	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	127448-18	95 93 RPD:2	LCS-2	101%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	127448-18	06/05/2015 06/05/2015	LCS-2	06/05/2015
Date analysed	-	127448-18	06/05/2015 06/05/2015	LCS-2	07/05/2015
TRHC 10 - C 14	mg/kg	127448-18	<50 <50	LCS-2	113%
TRHC 15 - C28	mg/kg	127448-18	<100 <100	LCS-2	117%
TRHC29 - C36	mg/kg	127448-18	<100 <100	LCS-2	101%
TRH>C10-C16	mg/kg	127448-18	<50 <50	LCS-2	113%
TRH>C16-C34	mg/kg	127448-18	<100 <100	LCS-2	117%
TRH>C34-C40	mg/kg	127448-18	<100 <100	LCS-2	101%
Surrogate o-Terphenyl	%	127448-18	83 83 RPD:0	LCS-2	101%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + % RPD		
Date extracted	-	127448-18	6/05/2015 6/05/2015	LCS-2	6/05/2015
Date analysed	-	127448-18	6/05/2015 6/05/2015	LCS-2	6/05/2015
Naphthalene	mg/kg	127448-18	<0.1 <0.1	LCS-2	101%
Acenaphthylene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	127448-18	<0.1 <0.1	LCS-2	107%
Phenanthrene	mg/kg	127448-18	<0.1 <0.1	LCS-2	106%
Anthracene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	127448-18	<0.1 <0.1	LCS-2	111%
Pyrene	mg/kg	127448-18	<0.1 <0.1	LCS-2	113%
Benzo(a)anthracene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	127448-18	<0.1 <0.1	LCS-2	99%
Benzo(b,j+k)fluoranthene	mg/kg	127448-18	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	127448-18	<0.05 <0.05	LCS-2	115%
Indeno(1,2,3-c,d)pyrene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	127448-18	99 97 RPD:2	LCS-2	106%

		Client Reference	e: E24192K, Pymble		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	127448-18	06/05/2015 06/05/2015	LCS-2	06/05/2015
Date analysed	-	127448-18	07/05/2015 07/05/2015	LCS-2	07/05/2015
HCB	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	127448-18	<0.1 <0.1	LCS-2	97%
gamma-BHC	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	127448-18	<0.1 <0.1	LCS-2	103%
Heptachlor	mg/kg	127448-18	<0.1 <0.1	LCS-2	98%
delta-BHC	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	127448-18	<0.1 <0.1	LCS-2	98%
Heptachlor Epoxide	mg/kg	127448-18	<0.1 <0.1	LCS-2	99%
gamma-Chlordane	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	127448-18	<0.1 <0.1	LCS-2	105%
Dieldrin	mg/kg	127448-18	<0.1 <0.1	LCS-2	99%
Endrin	mg/kg	127448-18	<0.1 <0.1	LCS-2	103%
pp-DDD	mg/kg	127448-18	<0.1 <0.1	LCS-2	114%
Endosulfan II	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	127448-18	<0.1 <0.1	LCS-2	107%
Methoxychlor	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-18	86 83 RPD:4	LCS-2	97%

		Client Reference	e: E24192K, Pymble		
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	127448-18	06/05/2015 06/05/2015	LCS-2	06/05/2015
Date analysed	-	127448-18	07/05/2015 07/05/2015	LCS-2	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	127448-18	<0.1 <0.1	LCS-2	117%
Bromophos-ethyl	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	127448-18	<0.1 <0.1	LCS-2	102%
Chlorpyriphos-methyl	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	127448-18	<0.1 <0.1	LCS-2	94%
Dimethoate	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	127448-18	<0.1 <0.1	LCS-2	97%
Fenitrothion	mg/kg	127448-18	<0.1 <0.1	LCS-2	91%
Malathion	mg/kg	127448-18	<0.1 <0.1	LCS-2	94%
Parathion	mg/kg	127448-18	<0.1 <0.1	LCS-2	116%
Ronnel	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-18	86 83 RPD:4	LCS-2	93%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-18	06/05/2015 06/05/2015	LCS-2	06/05/2015
Date analysed	-	127448-18	07/05/2015 07/05/2015	LCS-2	07/05/2015
Aroclor 1016	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	127448-18	<0.1 <0.1	LCS-2	118%
Aroclor 1260	mg/kg	127448-18	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	127448-18	86 83 RPD:4	LCS-2	94%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	127448-18	06/05/2015 06/05/2015	127448-3	06/05/2015
Date analysed	-	127448-18	06/05/2015 06/05/2015	127448-3	06/05/2015
Arsenic	mg/kg	127448-18	6 7 RPD: 15	127448-3	87%
Cadmium	mg/kg	127448-18	0.5 <0.4	127448-3	89%
Chromium	mg/kg	127448-18	18 14 RPD:25	127448-3	89%
Copper	mg/kg	127448-18	24 33 RPD:32	127448-3	107%
Lead	mg/kg	127448-18	52 81 RPD:44	127448-3	78%
Mercury	mg/kg	127448-18	<0.1 <0.1	127448-3	106%
Nickel	mg/kg	127448-18	6 7 RPD: 15	127448-3	88%
Zinc	mg/kg	127448-18	47 67 RPD: 35	127448-3	76%

		Client Reference	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-36	6/05/2015 6/05/2015	127448-3	6/05/2015
Date analysed	-	127448-36	6/05/2015 6/05/2015	127448-3	6/05/2015
TRHC6 - C9	mg/kg	127448-36	<25 <25	127448-3	96%
TRHC6 - C10	mg/kg	127448-36	<25 <25	127448-3	96%
Benzene	mg/kg	127448-36	<0.2 <0.2	127448-3	96%
Toluene	mg/kg	127448-36	<0.5 <0.5	127448-3	96%
Ethylbenzene	mg/kg	127448-36	<1 <1	127448-3	96%
m+p-xylene	mg/kg	127448-36	<2 <2	127448-3	96%
o-Xylene	mg/kg	127448-36	<1 <1	127448-3	93%
naphthalene	mg/kg	127448-36	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	127448-36	102 103 RPD:1	127448-3	94%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + % RPD		
Date extracted	-	127448-36	06/05/2015 06/05/2015	127448-3	06/05/2015
Date analysed	-	127448-36	07/05/2015 07/05/2015	127448-3	06/05/2015
TRHC 10 - C14	mg/kg	127448-36	<50 <50	127448-3	113%
TRHC 15 - C28	mg/kg	127448-36	<100 <100	127448-3	110%
TRHC29 - C36	mg/kg	127448-36	<100 <100	127448-3	106%
TRH>C10-C16	mg/kg	127448-36	<50 <50	127448-3	113%
TRH>C16-C34	mg/kg	127448-36	<100 <100	127448-3	110%
TRH>C34-C40	mg/kg	127448-36	<100 <100	127448-3	106%
Surrogate o-Terphenyl	%	127448-36	83 82 RPD:1	127448-3	96%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-36	6/05/2015 6/05/2015	127448-3	6/05/2015
Date analysed	-	127448-36	7/05/2015 7/05/2015	127448-3	6/05/2015
Naphthalene	mg/kg	127448-36	<0.1 <0.1	127448-3	97%
Acenaphthylene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	127448-36	<0.1 <0.1	127448-3	104%
Phenanthrene	mg/kg	127448-36	<0.1 <0.1	127448-3	105%
Anthracene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	127448-36	0.1 <0.1	127448-3	107%
Pyrene	mg/kg	127448-36	0.1 <0.1	127448-3	108%
Benzo(a)anthracene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	127448-36	<0.1 <0.1	127448-3	94%
Benzo(b,j+k)fluoranthene	mg/kg	127448-36	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	127448-36	0.06 0.05 RPD:18	127448-3	111%
Indeno(1,2,3-c,d)pyrene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]

		Client Referenc	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Benzo(g,h,i)perylene	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	127448-36	96 99 RPD:3	127448-3	100%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	127448-36	06/05/2015 06/05/2015	127448-3	06/05/2015
Date analysed	-	127448-36	07/05/2015 07/05/2015	127448-3	07/05/2015
HCB	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	127448-36	<0.1 <0.1	127448-3	95%
gamma-BHC	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	127448-36	<0.1 <0.1	127448-3	102%
Heptachlor	mg/kg	127448-36	<0.1 <0.1	127448-3	99%
delta-BHC	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	127448-36	<0.1 <0.1	127448-3	97%
Heptachlor Epoxide	mg/kg	127448-36	<0.1 <0.1	127448-3	98%
gamma-Chlordane	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	127448-36	<0.1 <0.1	127448-3	105%
Dieldrin	mg/kg	127448-36	<0.1 <0.1	127448-3	98%
Endrin	mg/kg	127448-36	<0.1 <0.1	127448-3	103%
pp-DDD	mg/kg	127448-36	<0.1 <0.1	127448-3	114%
Endosulfan II	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	127448-36	<0.1 <0.1	127448-3	108%
Methoxychlor	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-36	87 88 RPD:1	127448-3	93%

		Client Reference	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	127448-36	06/05/2015 06/05/2015	127448-3	06/05/2015
Date analysed	-	127448-36	07/05/2015 07/05/2015	127448-3	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	127448-36	<0.1 <0.1	127448-3	87%
Bromophos-ethyl	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	127448-36	<0.1 <0.1	127448-3	91%
Chlorpyriphos-methyl	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	127448-36	<0.1 <0.1	127448-3	83%
Dimethoate	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	127448-36	<0.1 <0.1	127448-3	99%
Fenitrothion	mg/kg	127448-36	<0.1 <0.1	127448-3	91%
Malathion	mg/kg	127448-36	<0.1 <0.1	127448-3	77%
Parathion	mg/kg	127448-36	<0.1 <0.1	127448-3	105%
Ronnel	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-36	87 88 RPD:1	127448-3	89%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-36	06/05/2015 06/05/2015	127448-3	06/05/2015
Date analysed	-	127448-36	07/05/2015 07/05/2015	127448-3	07/05/2015
Aroclor 1016	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	127448-36	<0.1 <0.1	127448-3	108%
Aroclor 1260	mg/kg	127448-36	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	127448-36	87 88 RPD:1	127448-3	90%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	127448-36	06/05/2015 06/05/2015	LCS-4	06/05/2015
Date analysed	-	127448-36	06/05/2015 06/05/2015	LCS-4	06/05/2015
Arsenic	mg/kg	127448-36	5 5 RPD:0	LCS-4	100%
Cadmium	mg/kg	127448-36	<0.4 <0.4	LCS-4	93%
Chromium	mg/kg	127448-36	11 13 RPD:17	LCS-4	96%
Copper	mg/kg	127448-36	21 19 RPD:10	LCS-4	97%
Lead	mg/kg	127448-36	57 58 RPD:2	LCS-4	91%
Mercury	mg/kg	127448-36	<0.1 <0.1	LCS-4	103%
Nickel	mg/kg	127448-36	6 6 RPD:0	LCS-4	93%
Zinc	mg/kg	127448-36	71 81 RPD: 13	LCS-4	92%

		Client Referenc	e: E24192K, Pymble		
QUALITYCONTROL vTRH(C6-C10)/BTEXNin	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Soil					
Date extracted	-	127448-54	6/05/2015 6/05/2015	127448-37	6/05/2015
Date analysed	-	127448-54	7/05/2015 7/05/2015	127448-37	6/05/2015
TRHC6 - C9	mg/kg	127448-54	<25 <25	127448-37	94%
TRHC6 - C10	mg/kg	127448-54	<25 <25	127448-37	94%
Benzene	mg/kg	127448-54	<0.2 <0.2	127448-37	94%
Toluene	mg/kg	127448-54	<0.5 <0.5	127448-37	94%
Ethylbenzene	mg/kg	127448-54	<1 <1	127448-37	94%
m+p-xylene	mg/kg	127448-54	<2 <2	127448-37	95%
o-Xylene	mg/kg	127448-54	<1 <1	127448-37	92%
naphthalene	mg/kg	127448-54	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	127448-54	98 88 RPD: 11	127448-37	94%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	127448-54	06/05/2015 06/05/2015	127448-37	06/05/2015
Date analysed	-	127448-54	07/05/2015 07/05/2015	127448-37	07/05/2015
TRHC 10 - C14	mg/kg	127448-54	<50 <50	127448-37	110%
TRHC 15 - C28	mg/kg	127448-54	100 <100	127448-37	113%
TRHC29 - C36	mg/kg	127448-54	<100 <100	127448-37	77%
TRH>C10-C16	mg/kg	127448-54	55 <50	127448-37	110%
TRH>C16-C34	mg/kg	127448-54	120 <100	127448-37	113%
TRH>C34-C40	mg/kg	127448-54	<100 <100	127448-37	77%
Surrogate o-Terphenyl	%	127448-54	80 87 RPD:8	127448-37	96%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-54	6/05/2015 6/05/2015	127448-37	6/05/2015
Date analysed	-	127448-54	7/05/2015 7/05/2015	127448-37	7/05/2015
Naphthalene	mg/kg	127448-54	<0.1 <0.1	127448-37	95%
Acenaphthylene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	127448-54	<0.1 <0.1	127448-37	92%
Phenanthrene	mg/kg	127448-54	<0.1 <0.1	127448-37	95%
Anthracene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	127448-54	0.2 0.2 RPD:0	127448-37	101%
Pyrene	mg/kg	127448-54	0.2 0.2 RPD:0	127448-37	103%
Benzo(a)anthracene	mg/kg	127448-54	<0.1 0.1	[NR]	[NR]
Chrysene	mg/kg	127448-54	0.1 0.1 RPD:0	127448-37	90%
Benzo(b,j+k)fluoranthene	mg/kg	127448-54	<0.2 0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	127448-54	0.1 0.1 RPD:0	127448-37	105%
Indeno(1,2,3-c,d)pyrene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]

		Client Referenc	e: E24192K, Pymble		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	127448-54	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	127448-54		127448-37	99%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + % RPD		
Date extracted	-	127448-63	06/05/2015 06/05/2015	127448-37	06/05/2015
Date analysed	-	127448-63	07/05/2015 07/05/2015	127448-37	07/05/2015
HCB	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	127448-63	<0.1 <0.1	127448-37	95%
gamma-BHC	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	127448-63	<0.1 <0.1	127448-37	101%
Heptachlor	mg/kg	127448-63	<0.1 <0.1	127448-37	95%
delta-BHC	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	127448-63	<0.1 <0.1	127448-37	96%
Heptachlor Epoxide	mg/kg	127448-63	<0.1 <0.1	127448-37	96%
gamma-Chlordane	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	127448-63	<0.1 <0.1	127448-37	104%
Dieldrin	mg/kg	127448-63	<0.1 <0.1	127448-37	98%
Endrin	mg/kg	127448-63	<0.1 <0.1	127448-37	100%
pp-DDD	mg/kg	127448-63	<0.1 <0.1	127448-37	112%
Endosulfan II	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	127448-63	<0.1 <0.1	127448-37	106%
Methoxychlor	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-63	84 94 RPD:11	127448-37	91%

		Client Reference	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides			Base + Duplicate + %RPD		
Date extracted	-	127448-63	06/05/2015 06/05/2015	127448-37	06/05/2015
Date analysed	-	127448-63	07/05/2015 07/05/2015	127448-37	07/05/2015
Azinphos-methyl (Guthion)	mg/kg	127448-63	<0.1 <0.1	127448-37	95%
Bromophos-ethyl	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	127448-63	<0.1 <0.1	127448-37	92%
Chlorpyriphos-methyl	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	127448-63	<0.1 <0.1	127448-37	84%
Dimethoate	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	127448-63	<0.1 <0.1	127448-37	101%
Fenitrothion	mg/kg	127448-63	<0.1 <0.1	127448-37	77%
Malathion	mg/kg	127448-63	<0.1 <0.1	127448-37	84%
Parathion	mg/kg	127448-63	<0.1 <0.1	127448-37	108%
Ronnel	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	127448-63	84 94 RPD:11	127448-37	95%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-63	06/05/2015 06/05/2015	127448-37	06/05/2015
Date analysed	-	127448-63	07/05/2015 07/05/2015	127448-37	07/05/2015
Aroclor 1016	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	127448-63	<0.1 <0.1	127448-37	111%
Aroclor 1260	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	127448-63	84 94 RPD:11	127448-37	97%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	127448-54	06/05/2015 06/05/2015	127448-37	06/05/2015
Date analysed	-	127448-54	06/05/2015 06/05/2015	127448-37	06/05/2015
Arsenic	mg/kg	127448-54	5 5 RPD:0	127448-37	82%
Cadmium	mg/kg	127448-54	<0.4 <0.4	127448-37	89%
Chromium	mg/kg	127448-54	15 15 RPD:0	127448-37	87%
Copper	mg/kg	127448-54	30 28 RPD:7	127448-37	82%
Lead	mg/kg	127448-54	31 32 RPD:3	127448-37	88%
Mercury	mg/kg	127448-54	<0.1 <0.1	127448-37	86%
Nickel	mg/kg	127448-54	6 7 RPD:15	127448-37	83%
Zinc	mg/kg	127448-54	33 37 RPD:11	127448-37	71%

		Client Reference	e: E24192K, Pymble		
QUALITYCONTROL vTRH(C6-C10)/BTEXNin	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Soil					
Date extracted	-	127448-63	6/05/2015 6/05/2015	127448-55	6/05/2015
Date analysed	-	127448-63	7/05/2015 7/05/2015	127448-55	7/05/2015
TRHC6 - C9	mg/kg	127448-63	<25 <25	127448-55	99%
TRHC6 - C10	mg/kg	127448-63	<25 <25	127448-55	99%
Benzene	mg/kg	127448-63	<0.2 <0.2	127448-55	98%
Toluene	mg/kg	127448-63	<0.5 <0.5	127448-55	98%
Ethylbenzene	mg/kg	127448-63	<1 <1	127448-55	100%
m+p-xylene	mg/kg	127448-63	<2 <2	127448-55	99%
o-Xylene	mg/kg	127448-63	<1 <1	127448-55	96%
naphthalene	mg/kg	127448-63	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	127448-63	105 104 RPD: 1	127448-55	96%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	127448-63	06/05/2015 06/05/2015	127448-55	06/05/2015
Date analysed	-	127448-63	06/05/2015 06/05/2015	127448-55	07/05/2015
TRHC 10 - C14	mg/kg	127448-63	<50 <50	127448-55	106%
TRHC 15 - C28	mg/kg	127448-63	<100 <100	127448-55	106%
TRHC29 - C36	mg/kg	127448-63	<100 <100	127448-55	86%
TRH>C10-C16	mg/kg	127448-63	<50 <50	127448-55	106%
TRH>C16-C34	mg/kg	127448-63	<100 <100	127448-55	106%
TRH>C34-C40	mg/kg	127448-63	<100 <100	127448-55	86%
Surrogate o-Terphenyl	%	127448-63	76 80 RPD:5	127448-55	96%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	127448-63	6/05/2015 6/05/2015	127448-55	6/05/2015
Date analysed	-	127448-63	7/05/2015 7/05/2015	127448-55	7/05/2015
Naphthalene	mg/kg	127448-63	<0.1 <0.1	127448-55	96%
Acenaphthylene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	127448-63	<0.1 <0.1	127448-55	95%
Phenanthrene	mg/kg	127448-63	<0.1 <0.1	127448-55	97%
Anthracene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	127448-63	<0.1 <0.1	127448-55	101%
Pyrene	mg/kg	127448-63	<0.1 <0.1	127448-55	102%
Benzo(a)anthracene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	127448-63	<0.1 <0.1	127448-55	91%
Benzo(b,j+k)fluoranthene	mg/kg	127448-63	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	127448-63	<0.05 <0.05	127448-55	102%
Indeno(1,2,3-c,d)pyrene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]

		Client Reference	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Benzo(g,h,i)perylene	mg/kg	127448-63	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	127448-63	94 99 RPD:5	127448-55	98%
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate		
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	127448-38	06/05/2015 06/05/2015		
Date analysed	-	127448-38	07/05/2015 07/05/2015		
HCB	mg/kg	127448-38	<0.1 <0.1		
alpha-BHC	mg/kg	127448-38	<0.1 <0.1		
gamma-BHC	mg/kg	127448-38	<0.1 <0.1		
beta-BHC	mg/kg	127448-38	<0.1 <0.1		
Heptachlor	mg/kg	127448-38	<0.1 <0.1		
delta-BHC	mg/kg	127448-38	<0.1 <0.1		
Aldrin	mg/kg	127448-38	<0.1 <0.1		
Heptachlor Epoxide	mg/kg	127448-38	<0.1 <0.1		
gamma-Chlordane	mg/kg	127448-38	<0.1 <0.1		
alpha-chlordane	mg/kg	127448-38	<0.1 <0.1		
Endosulfan I	mg/kg	127448-38	<0.1 <0.1		
pp-DDE	mg/kg	127448-38	0.4 0.3 RPD:29		
Dieldrin	mg/kg	127448-38	2.5 2.6 RPD:4		
Endrin	mg/kg	127448-38	<0.1 <0.1		
pp-DDD	mg/kg	127448-38	<0.1 <0.1		
Endosulfan II	mg/kg	127448-38	<0.1 <0.1		
pp-DDT	mg/kg	127448-38	0.1 0.1 RPD:0		
Endrin Aldehyde	mg/kg	127448-38	<0.1 <0.1		
Endosulfan Sulphate	mg/kg	127448-38	<0.1 <0.1		
Methoxychlor	mg/kg	127448-38	<0.1 <0.1		
Surrogate TCMX	%	127448-38	96 64 RPD:40		

		Client Referenc	e: E24192K, Pymble		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	127448-63	06/05/2015 06/05/2015	LCS-5	06/05/2015
Date analysed	-	127448-63	06/05/2015 06/05/2015	LCS-5	06/05/2015
Arsenic	mg/kg	127448-63	8 10 RPD:22	LCS-5	112%
Cadmium	mg/kg	127448-63	<0.4 <0.4	LCS-5	102%
Chromium	mg/kg	127448-63	6 6 RPD:0	LCS-5	106%
Copper	mg/kg	127448-63	32 32 RPD:0	LCS-5	108%
Lead	mg/kg	127448-63	16 16 RPD:0	LCS-5	101%
Mercury	mg/kg	127448-63	<0.1 <0.1	LCS-5	92%
Nickel	mg/kg	127448-63	3 3 RPD:0	LCS-5	102%
Zinc	mg/kg	127448-63	14 12 RPD:15	LCS-5	100%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-3	06/05/2015
Date analysed	-	[NT]	[NT]	LCS-3	06/05/2015
TRHC6 - C9	mg/kg	[NT]	[NT]	LCS-3	114%
TRHC6 - C10	mg/kg	[NT]	[NT]	LCS-3	114%
Benzene	mg/kg	[NT]	[NT]	LCS-3	114%
Toluene	mg/kg	[NT]	[NT]	LCS-3	114%
Ethylbenzene	mg/kg	[NT]	[NT]	LCS-3	113%
m+p-xylene	mg/kg	[NT]	[NT]	LCS-3	115%
o-Xylene	mg/kg	[NT]	[NT]	LCS-3	109%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	LCS-3	110%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-3	06/05/2015
Date analysed	-	[NT]	[NT]	LCS-3	06/05/2015
TRHC 10 - C14	mg/kg	[NT]	[NT]	LCS-3	98%
TRHC 15 - C28	mg/kg	[NT]	[NT]	LCS-3	88%
TRHC 29 - C36	mg/kg	[NT]	[NT]	LCS-3	116%
TRH>C10-C16	mg/kg	[NT]	[NT]	LCS-3	98%
TRH>C16-C34	mg/kg	[NT]	[NT]	LCS-3	88%
TRH>C34-C40	mg/kg	[NT]	[NT]	LCS-3	116%
Surrogate o-Terphenyl	%	[NT]	[NT]	LCS-3	94%

		Client Referenc	e: E24192K, Pymble		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	LCS-3	6/05/2015
Date analysed	-	[NT]	[NT]	LCS-3	7/05/2015
Naphthalene	mg/kg	[NT]	[NT]	LCS-3	98%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	LCS-3	95%
Phenanthrene	mg/kg	[NT]	[NT]	LCS-3	99%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	LCS-3	103%
Pyrene	mg/kg	[NT]	[NT]	LCS-3	105%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	LCS-3	93%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	LCS-3	108%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	LCS-3	103%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	[NT]	[NT]	127448-55	06/05/2015
Date analysed	-	[NT]	[NT]	127448-55	06/05/2015
Arsenic	mg/kg	[NT]	[NT]	127448-55	82%
Cadmium	mg/kg	[NT]	[NT]	127448-55	85%
Chromium	mg/kg	[NT]	[NT]	127448-55	85%
Copper	mg/kg	[NT]	[NT]	127448-55	89%
Lead	mg/kg	[NT]	[NT]	127448-55	78%
Mercury	mg/kg	[NT]	[NT]	127448-55	89%
Nickel	mg/kg	[NT]	[NT]	127448-55	84%
Zinc	mg/kg	[NT]	[NT]	127448-55	78%

		Client Referenc	e: E24192K, Pymble		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	[NT]	[NT]	LCS-6	06/05/2015
Date analysed	-	[NT]	[NT]	LCS-6	06/05/2015
Arsenic	mg/kg	[NT]	[NT]	LCS-6	109%
Cadmium	mg/kg	[NT]	[NT]	LCS-6	103%
Chromium	mg/kg	[NT]	[NT]	LCS-6	105%
Copper	mg/kg	[NT]	[NT]	LCS-6	107%
Lead	mg/kg	[NT]	[NT]	LCS-6	99%
Mercury	mg/kg	[NT]	[NT]	LCS-6	93%
Nickel	mg/kg	[NT]	[NT]	LCS-6	101%
Zinc	mg/kg	[NT]	[NT]	LCS-6	100%

Report Comments:

Asbestos-ID in soil; Sample 127448-24

A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Lulu Guo, Paul Ching Lulu Guo

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Goeff Fletcher

Sample Login Details	
Your Reference	E24192K, Pymble
Envirolab Reference	127448
Date Sample Received	05/05/2015
Date Instructions Received	05/05/2015
Date Results Expected to be Reported	12/05/2015

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	67 Soils, 3 waters, 1 Material
Turnaround Time Requested	Standard
Temperature on receipt (°C)	7.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	Acid Extractable metals in soil	Asbestos ID - materials	Asbestos ID - soils	BTEX in Water	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PAHs in Soil	PCBs in Soil	svTRH (C10-C40) in Soil	vTRH(C6-C10)/BTEXN in Soil	On Hold
BH1-0-0.2	1		1		1	~	1	1	1	1	
BH1-0.5-0.9											1
BH2-0-0.2	1		1		1	~	1	1	1	1	
BH2-0.5-0.8	1				1	~	1	1	1	1	
BH3-0-0.1	1		1		1	1	1	1	1	1	
BH3-0.3-0.75											1
BH3-1.3-1.5											1
BH4-0.05-0.15	1		1		1	1	1	~	1	~	
BH4-0.3-0.5											~
BH5-0-0.3	1		~		1	✓	1	~	1	~	
BH8-0-0.3	1		~		1	1	1	1	1	~	
BH8-0.5-0.8	1				~	~	~	~	~	~	
BH9-0-0.3	1		~		~	1	~	~	~	~	
BH9-0.5-0.75	✓		<				✓		~	<	
BH9-1.7-1.95	1		~				~		~	~	
BH9-2-2.2											1
BH9-2.7-3.0											1
BH13-0-0.3	1		1		1	1	1	1	1	1	
BH13-0.5-0.7											1
BH14-0-0.2	1		1		1	1	1	1	1	1	
BH14-0.3-0.5											1
BH18-0-0.1	1		1		1	1	1	1	1	1	
BH18-0.3-0.6	1		1				1		1	1	
BH19-0-0.2	1		1		1	1	1	1	1	1	
BH19-0.4-0.6											1
BH20-0-0.2	1		1		1	1	1	1	1	1	
BH20-0.3-0.5	✓		~				✓		1	1	
BH20-0.9-1.1											1
BH20-1.1-1.3											~
BH21-0-0.2	✓ ✓		~		✓ ✓	✓ ✓	✓ ✓	 	✓ ✓	 	
BH21-0.3-0.5	✓ ✓				 	 	✓ ✓	 	✓ ✓	 	\square
BH22-0-0.3	✓ ✓		 		~	~	√	1	1	 	\square
BH22-0.5-0.7	1		1			_	<i>\</i>		1	1	
BH23-0-0.3	1		 		1	1	1	1	1	 	
BH23-0.6-0.9	<i>√</i>		 		_		✓ ✓	_	✓ ✓	1	-
BH24-0-0.3 BH24-0.5-0.6	✓ ✓		1		✓ ✓	<i>\</i>	✓ ✓	✓ ✓	✓ ✓	✓ ✓	-
BH24-0.5-0.6 BH25-0-0.15	v /		_		v /	✓ ✓	v /	 	/	✓ ✓	-
0.12	•		~		•	V	V	•	•	•	

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

BH25-0.15-	✓		<				~		~	~	
0.25											
BH25-0.3-0.6											1
BH26-0-0.2	<		<		~	~	~	~	~	<	
BH26-0.2-0.5	<		<				<		<	<	
BH27-0-0.3	✓		<		~	~	~	~	<	<	
BH27-0.5-0.7	✓				~	<	<	~	~	<	
BH28-0-0.2	<		<		~	~	<	~	< < <	<	
BH28-0.3-0.5	<				1	~	~	~	~	<	
BH31-0-0.2	<		<		~	~	~	~	~	<	
BH31-0.5-0.8											1
BH31-1.3-1.5											✓
BH32-0-0.2	<		<		<	<	<	<	<	<	
BH32-0.5-0.7											✓
BH32-1.3-1.5											1
BH33-0-0.2	<		<		<	<	<	<	<	<	
BH33-0.3-0.5	<		<				<		<	<	
BH33-0.6-0.9	✓ ✓						<		< $<$ $<$ $<$	<	
BH33-1-1.2	>						<		<	<	
BH34-0-0.2	<		<		<	<	<	<	<	<	
BH34-0.3-0.5	<				<	<	<	<	<	<	
BH35-0-0.2	<		<		<	<	<	<	<	<	
BH35-0.5-0.8											1
BH35-1.3-1.5											1
BH36-0-0.2	<		<		<	<	<	<	~	<	
BH36-0.5-0.7	<				<	<	<	<	~	<	
Dup2	<				~	~	~	~	~	<	
Dup3	1				1	1	1	1	1	1	
Dup4											1
TBS										1	
FR1				1							
FR2				~							
FR3				1							
S1		1									

I	<u>TO:</u>					SAMPL	E AND	CHAIN OF	CUS	יססד	FOI		EROM	:		·····				Ē
	12 AS	OLAB S HLEY S SWOOD	TREET		iber:						EROM: ENVIRONMENTAL INVESTIGATION SERVICES									
) 9910() 9910(. `	,	Date Resi Required:		STANDARD					REAR MACO P: 02	9888	E PAF 5000	RK, NS	SW 21 F: 02-	988 8	5001	
	Attent Locati	ion: Ail				Page:	and a second to	510+3	a . A			Sam	Atten ple Pre						<u>n</u> -3	1 ye -
	Sampl			IS .						1			Te	ests R	equire T	d				
		ate Ipled	Lab Ref:	 Sample Number 	Depth (m)	Sample Container	PID	Sample Description	Combe S	Combo 3a	Combo 6	Combo 6a				BTEX	Asbestos	4		
	1/5	15	, <u>(</u>	BH I	0.52	4,A	0	511				Х		:	:	:				
			2	<u> </u>	0.5-9	4	0	Shale									:			ļ
			3	BHZ	0 0.2	6.A	0	Fil			$\overline{\mathbf{v}}$	X								
	· •		4	BH3	05.8	GA	0	Shele Fill			\frown	X	 			-				
			6	1	0.3-75		0	Shale						•						
			7	4	1315	4	0	ł												
	45	15	8	BH'4	0.05-	G,A	0	Clap			· .	\times	ļ							
		ļ	9	1	0.30.5	G	0	4	i	·			ļ						 	
	ļ		10	BH5	003	G.A	$\frac{0}{0}$	Fil	<u> </u>	-		X	:				ž			
	· .	<u> </u>	12	BH8	0.5-	4	0	Clay			\mathbf{X}						:			
	1/5	15	13	BH 9	0.3	GA	0	611				X	<u> </u>		· .					
		•	14		0.5 -		υ			X								- 	:	ļ
			15		17195		0	<u> </u>	ļ	$\mid \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			<u>.</u>	:					ļ	
			16		2 - 2 - 2 - 2 - 2 - 2 - 3 - 3	v	0	Clay						. <u></u>			<u>:</u>			
	201	4/15	18	# BH 13	-	G,A	0	511				X						<u> </u>	-	
		<u>יןי</u> ן	19		0.5-	G	Ŭ	Clay					1	E	งี้เริง	яв		12	Serv Ashle	ey St
	515	115	20	BHIY	0.02	G,A	0	511]		X		السند			P	1: (02)	9910	200
		<u> </u>	21	4.	0.35.5	6	0	Clay		ļ	ļ	•	<u> </u>		te Re			1/5	14	ŏ ≸—
	:		22	BH18	0-1	C,A		Fil'	<u> </u>		<u> </u>		<u> </u>		ne Ri Iceive	ceiv	d:	KH	<u>i</u> zs	<u></u>
•		· ·	23	₩ BH19.	0.6	G.A	0	<u> </u>		P		X	<u> </u>	<u> </u> ∓e	₩€	bory.	(epac	di	}-0	Ł
			24 25	BHIY.	0-0.2	6	0	Clay				\vdash	.: 					ilen/N	lone	+
	Remarks (comments/detection limits required)):		<u></u>	G - 1 A - 1	250mg	j ontain g Glas k Asbe Bag	s Jar	Bag	<u></u>	<u>,</u>								
	Relinc	uished	BY:	, PA	5	Date:	15/1	5	Time		50	pm		eived	ву: С~			Date J	:: ** [5]!	5
		· 🥿		· · · ·					- *	•				V						

TO: ENVIROL 12 ASHL CHATSW P: (02) 9 F: (02) 9	ey S 100D 9106	TREET NSW 3 200	S PTY LTC 2067) E	EIS Job Number: Date Res Required:	ults	E24192K STANDARD						ONMI TIGA CES OF 1 UARI	tion 15 Wi IE PAI	ICKS I RK, N	SW 21			
Attention	n: Aile	Ben			Page:	Page: 2 of 3						P: 02-9888 5000 F: 02-9888 5001 Attention:							
Location		Pymble									Sam	ole Pre				n Ice			
Sampler:		GF+ J	S & and an		š š. 1	및 호텔	ing an ang a Tang tang ang ang ang ang ang ang ang ang ang					Te	sts R	equire	ed	<u> </u>			
Date Sample	ed	Lab Ref: ノイイ	Sample Number f Q	Depth (m)	Sample Container	PID	Sample Description	Combo 3	Combo 3a	Combo 6	Combo 6a				втех	Asbestos			
55			BHZO	00.2	GA	0	FIL				X								
		27	1	0.35.5	ł	C	L.		\times										
Ø.		28		0.9-	4	0	Sind					· .							
		29	4	1.1.	6	0	clay	·											
			BH21	00.2	G,A	Ŏ	fil				\times								
		31	Ļ	0.3-5	4	0	Clay			\times									
		32	BH22	0-7	Ĝ, A	0	F 11		ļ		X			ļ	· · · ·	ļ			
		33	4	0.5-		C			X										
304	15	34	BH 23			0			ļ,	. <u>.</u>	X	.		ļ					
1		35	4	0.69		0			\boxtimes					: 	ļ				
		36	BH 24	0.0.3	<u> </u>	0	4		ļ		\times	<u> </u>	 	<u> </u>		ļ			
		37	ţ	0.5-6	4	0	Clay		ļ	\bowtie			ļ	Į. 	<u> </u>	<u> </u>			
		38	BH25	0-0.15	14A	0	<u> </u>			·	X	ļ			_	_			
		39		018-20	5 4	0	4			<u>}</u>	ļ	<u> </u>			_	<u> </u>	:		
		40		036.	<u> </u>	0	Clay	-										-	
		41	8426	0.0.2	h,A		Fill					-		- <u> </u>	-	<u> </u>		_	
 		42	4	02-		0	- <u> </u>		X			-	<u> </u>	<u>.</u>	-				
		43	BH27		V	0										-		-	
+		44	4	0.50.3	F		Clay Fill			$ \vdash $. <u> </u>			-			┢	
22	15	45	BHZS	0-0.7	G A	43	Clay					<u>-</u>			-			┝	
		46	1	0.3-	1 1	0			<u>.</u>		$\frac{1}{\sqrt{2}}$								
1/5	15	47	BH3	0.5-	h,A		Fill'					<u> </u>	<u></u>		<u></u>		·	┢	
		48		1315	<u> </u>	0	Clay	+						+			·*	┢	
		499	Vi 7			0	Shale Fill											┢	
Remark	s (co		BA 32	limits require	- 4, /4 d):			G - A -	250m	ontain og Gla: k Asb	ss Jai		l	<u></u>	I		1	<u></u>	
Relinqui	ished	Byr	The second		Date:				e:			Rec	eived	By:			Date		
		ブ		••	5	151	5	-	33	SC	pm		Л	$\underline{}$	<u> </u>		5	19	

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention: Alleen				SAMPLE AND CHAIN OF C EIS Job Number: Date Results Regulred: Page: 3.of				3.)				EROM: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD								
												MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention:								
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Conbo 3	Combo 3a	Combo 6	Combo Ga				втех	Asbestos					
1/5/15	2744 51	BH 32	0.55.7	G	0	aay													•	
	SZ	Ļ	1315	6	0	Shale				$\overline{\checkmark}$		·					·			
30/4/15	53 54	BH 33	0 0.2	G A	9.1	FII		\overline{X}		쉬						-+				
, 40 , *•	59		0.6 - 0.9	+	28	Clay	X							*		• •				
<u>.</u>	56	*	1-1.2	4	40.3		\mathbf{X}													
·	1	BH 34-	0-07	G,A	0	Fil				Х	N6.								•	
ł	58	ł	0.3 0.5	G	0	Clay	ļ		\times											
1/5/15		BH35	02	6,A	0.	Fill	ļ			X	 								ı	
 	60		08	4	0	Clay Shale			4			·					<u>; </u>		.	
	67	₩ BH36	1.31.5		0	Fill			<u>.</u>	X						·				
	62	Dy J	0.2	6	$\frac{1}{0}$	Shale	~		X										i,	
30/4/15	-1:1	DOI				50,1			X	4					Se	re	4	0	M	
4	64	Dp2			-				X					[-: -	
1/5/15	65	ap3	<u> </u>						\mid										ł	
4	66	Dip4			الالالي (مريد م	e wypast .			V	E	ا سند ما				. ()	بط	1	M	5	
5/5/5		Dip 5								C				X	K	rer.	0		<u>ې</u>	
415119		TBS FRI		<u>↓</u> <u>↓</u>		Wates								Ń					ľ	
30415	160	FRZ	1		1-	1	+	+		<u> </u>	1			X		<u> </u>			 :	
5/5/15		FR3			+		+	·	†		†			X	<u> </u>				ŀ	
41515	71	SI	<u> </u>	A	-	Material									X	[
								<u> </u>			<u> </u>		 			 				
Remarks (co Plea:	ominents	s/dotogtioedi end Mel	mits required	<u></u> "αρ	5 1	6	G -	250m	ontain g Glas k Asb	is Jar		<u></u>			<u> </u>		<u> </u>]		
Relinquishe	rolat	o Mel	bouror	B Date:				Plastic				eived E	By:			Date			ł	
nemiquisite	0	rs		1	-1-1	15			SC			A				1	1s/1	-		

· · · ·

.

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne ABN 37 112 535 645 - 02 1 Dalmore Drive, Scoresby VIC 3179 Australia Ph +613 9763 2500 Fax +613 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS

6246

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff Fletcher

 Sample log in details:

 Your Reference:
 E24192K - Pymble

 No. of samples:
 2 Soils

 Date samples received / completed instructions received
 07/05/2015 / 07/05/2015

 This report replaces the one issued on the 13/05/2015 with the inclusion of lead duplicate and triplicate results for DUP1.

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 13/05/15
 / 14/05/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

A Marthik

Analisa Mathrick Laboratory Supervisor

Client Reference: E24192K - Pymble

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	6246-1	6246-2
Your Reference		DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
vTRHC6 - C9	mg/kg	<25	<25
vTRHC6 - C10	mg/kg	<25	<25
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	80	90

TRH Soil C10-C40 NEPM			
Our Reference:	UNITS	6246-1	6246-2
Your Reference	UNITS	DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
TRHC 10 - C 14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	<100	<100
TRHC29 - C36	mg/kg	<100	<100
Total+veTRH(C10-C36)	mg/kg	<50	<50
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	<100	<100
TRH>C34-C40	mg/kg	<100	<100
Total+veTRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	76	74

PAHs in Soil			
Our Reference:	UNITS	6246-1	6246-2
Your Reference		DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.3	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	0.7	<0.1
Pyrene	mg/kg	0.6	<0.1
Benzo(a)anthracene	mg/kg	0.3	<0.1
Chrysene	mg/kg	0.4	<0.1
Benzo(b,j&k)fluoranthene	mg/kg	0.6	<0.2
Benzo(a)pyrene	mg/kg	0.50	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1
Total +ve PAH's	mg/kg	3.8	<0.05
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.6	<0.5
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.7	<0.5
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	0.7	<0.5
Surrogate p-Terphenyl-d14	%	67	64

OCP in Soil			
Our Reference:	UNITS	6246-1	6246-2
Your Reference		DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
alpha-BHC	mg/kg	<0.1	<0.1
Hexachlorobenzene	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve reported DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	86

OP in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	6246-1 DUP 1 30/04/2015 Soil	6246-2 DUP5 5/05/2015 Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
Azinphos-methyl	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyrifos	mg/kg	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorovos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	86

PCBs in Soil			
Our Reference:	UNITS	6246-1	6246-2
Your Reference		DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date extracted	-	08/05/2015	08/05/2015
Date analysed	-	09/05/2015	09/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	91	86

Acid Extractable metals in soil				
Our Reference:	UNITS	6246-1	6246-2	6246-3
Your Reference		DUP1	DUP5	DUP1-
				Triplicate
Date Sampled		30/04/2015	5/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil
Date digested	-	08/05/2015	08/05/2015	13/05/2015
Date analysed	-	08/05/2015	08/05/2015	14/05/2015
Arsenic	mg/kg	4	7	[NA]
Cadmium	mg/kg	<0.4	<0.4	[NA]
Chromium	mg/kg	24	14	[NA]
Copper	mg/kg	23	46	[NA]
Lead	mg/kg	600	44	73
Mercury	mg/kg	<0.1	<0.1	[NA]
Nickel	mg/kg	6	5	[NA]
Zinc	mg/kg	79	44	[NA]

Client Reference: E24192K - Pymble

Moisture			
Our Reference:	UNITS	6246-1	6246-2
Your Reference		DUP1	DUP5
Date Sampled		30/04/2015	5/05/2015
Type of sample		Soil	Soil
Date prepared	-	8/05/2015	8/05/2015
Date analysed	-	11/05/2015	11/05/2015
Moisture	%	28	33

Client Reference: E24192K - Pymble

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
0.000	
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore" Total +ve TRH" is simply a sum of the positive individual TRH fractions.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-015	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	24192K - Pyr Duplicate	Duplicate results	Spike Sm#	Spike %
QUALITICONTROL	UNITS	FQL		Dial IK	Sm#	Duplicate results	Spike Sili#	Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			08/05/2 015	6246-1	08/05/2015 08/05/2015	LCS	08/05/2015
Date analysed	-			09/05/2 015	6246-1	09/05/2015 09/05/2015	LCS	09/05/2015
vTRHC6 - C9	mg/kg	25	Org-016	<25	6246-1	<25 <25	LCS	104%
vTRHC6 - C10	mg/kg	25	Org-016	<25	6246-1	<25 <25	LCS	85%
Benzene	mg/kg	0.2	Org-016	<0.2	6246-1	<0.2 <0.2	LCS	92%
Toluene	mg/kg	0.5	Org-016	<0.5	6246-1	<0.5 <0.5	LCS	92%
Ethylbenzene	mg/kg	1	Org-016	<1	6246-1	<1 <1	LCS	94%
m+p-xylene	mg/kg	2	Org-016	~2	6246-1	<2 <2	LCS	91%
o-Xylene	mg/kg	1	Org-016	<1	6246-1	<1 <1	LCS	95%
naphthalene	mg/kg	1	Org-014	<1	6246-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	83	6246-1	80 99 RPD:21	LCS	118%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRHSoilC10-C40NEPM						Base II Duplicate II % RPD		
Date extracted	-			08/05/2 015	[NT]	[NT]	LCS	08/05/2015
Date analysed	-			09/05/2 015	[NT]	[TN]	LCS	09/05/2015
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS	101%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS	100%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS	100%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS	101%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS	102%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS	100%
Surrogate o-Terphenyl	%		Org-003	76	[NT]	[NT]	LCS	93%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			08/05/2 015	[NT]	[NT]	LCS	08/05/2015
Date analysed	-			09/05/2 015	[NT]	[NT]	LCS	09/05/2015
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS	97%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	LCS	104%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	LCS	96%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[TN]	[NR]	[NR]

Client Reference: E24192K - Pymble								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		,
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS	100%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS	102%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS	116%
Benzo(b,j&k) fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS	113%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	66	[NT]	[NT]	LCS	108%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
OCP in Soil	<u> </u>					Base II Duplicate II % RPD		
Date extracted	-			08/05/2 015	[NT]	[NT]	LCS	08/05/2015
Date analysed	-			09/05/2 015	[NT]	[NT]	LCS	09/05/2015
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	101%
Hexachlorobenzene	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	102%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	93%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	89%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	103%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	107%
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	97%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	83%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	84%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS	106%
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005 Org-005	<0.1	[NT]	[NT]	LCS	91%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
INIGUIUXYUIIUI	mg/kg	0.1	Cig-005	×0.1	נואון	[141]	[1417]	[INIX]

Client Reference:	
-------------------	--

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in Soil						Base II Duplicate II % RPD		Receivery
Surrogate TCMX	%		Org-005	86	[NT]	[NT]	LCS	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OP in Soil						Base II Duplicate II % RPD		
Date extracted	-			08/05/2 015	[NT]	[NT]	LCS	08/05/2015
Date analysed	-			09/05/2 015	[NT]	[NT]	LCS	09/05/2015
Azinphos-methyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS	110%
Chlorpyrifos-methyl	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS	120%
Diazinon	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorovos	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS	113%
Fenitrothion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	LCS	121%
Malathion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Parathion	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-015	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-015	86	[NT]	[NT]	LCS	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			08/05/2 015	[NT]	[TN]	LCS	08/05/2015
Date analysed	-			09/05/2 015	[NT]	[NT]	LCS	09/05/2015
Aroclor 1016	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS	107%
Aroclor 1260	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-015	86	[NT]	[NT]	LCS	95%

		Clie	ent Referenc	e: E	24192K - Pyi	nble		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Datedigested	-			08/05/2 015	6246-3	13/05/2015 13/05/2015	LCS-1	08/05/2015
Date analysed	-			08/05/2 015	6246-3	14/05/2015 14/05/2015	LCS-1	08/05/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	100%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	99%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	102%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	6246-3	73 61 RPD:18	LCS-1	101%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	98%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	100%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture	_				_			
Date prepared	-			[NT]				
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				

Client Reference: E24192K - Pymble

Report Comments:

#Metals: The duplicate is outside acceptable %RPD, reanalysis indicates possible sample heterogeneity for DUP1.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. **LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated pheno

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne ABN 37 112 535 645 - 02 1 Dalmore Drive, Scoresby VIC 3179 Australia Ph +613 9763 2500 Fax +613 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client:		
Environmental Investigation Services	ph:	02 9888 5000
PO Box 976	Fax:	02 9888 5001
North Ryde BC NSW 1670		

Attention: Geoff Fletcher

Sample log in details:	
Your reference:	E24192K - Pymble
Envirolab Reference:	6246
Date received:	07/05/2015
Date results expected to be reported:	13/05/15

Samples received in appropriate condition for analysis:	YES
No. of samples provided	2 Soils
Turnaround time requested:	Standard
Temperature on receipt	10.5C
Cooling Method:	Ice Pack
Sampling Date Provided:	YES

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples. Other samples such as filters, tubes and air toxics cans may be used entirely during testing.

Contact details:

Please direct any queries to Analisa Mathrick on amathrick@envirolab.com.au or Chris De Luca on cdeluca@envirolab.com.au ph: 03 9763 2500 fax: 03 9763 2633

TO: ENVIROLAB 12 ASHLEY CHATSWOO P: (02) 9910 F: (02) 9910 Attention: Al	STREET D NSW 6200 6201	r	,	EIS Job Number Date Re Required Page:	sults	E24192K STANDARD	3						ISW 2 F: 02				
Location:	Fymbl	0					1	nit si a danam		Sam	ple Preser	ved in i	sky (n lce			76
Sampler:	GF+		·····		araqti dililinginerang pe							Requir					
Date Sampled	Lab Ref: 741	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 3	Combo 3a	Cambo 6	Combo 6a			втех	Asbestos			
1/5/15	51	BHJZ	0.557	9	0	alay											
Į.	SZ	4	1075	1	0	Shale											
30415	Ω	81133	352	G.A	9.1	511				X		EN	IROU	B	Env 1a	Dalin	Servi pre D
	54		0.305		20-3	-		\times					Shaup		Scon	sb; 1	ean∵ ∕IC 3
	55		0.5 5.9	1	2.3	Clay	\mathbf{X}						62	114		1.	753 2
	56	Ţ	1-1.2	6	40.3	÷	\times					Dat	c Rea	eivod	#1= +2	>//S	
	57	13:43 4-	0-0.2	G.A	0	61				X	A 1. P PR	Red	eiveo	by:	his		
d.	58	-	0.3 3.5	G	0	Clary			X			Coc	ling:		enack		
1515	59	BH35	62	<u>4.A</u>	0	511				X		Sec	urity:	Intact	Brok	en/No	пе
	60		0568	4	Q	ilay_		-									-
	61	Ļ	0375	Ļ	0	Shele						-	unten Vent.				
	and Street	BH 36	03.2	6,A	0	1511				\times							
	62	1	0.567	4	<u>Q</u>	Shele	-		X	y - Main				1.00			
3014 15	-	D.pl	Reing,		-	56,1			XX	4	с узданияст жен (Ит.9734) 17. анилияст н. – н. – н.			26	2		0
-	64	D.p2_	1						\odot						a		un
15/2	1	<u>Q.p3</u>	•==-		<u> </u>				<u> </u>							_	
-	'66	not-	***													1	-
7565	17	Pro S	e	-	1991aas. 				1	.5.			5	K	12	0	14
-112 15 2.1.1.1	67	TRS		<u>v</u> V		÷.		-					3				
05-14-15	68 69	FR2				Wenter							X		~~		
11515		FR3		1-		1				·			$\widehat{\mathbf{x}}$				
455	<i>1</i> 0 71	SI		A	· · · · · · · · · · · · · · · · · · ·	Markend							1	$\overline{\mathbf{X}}$			
-12/13		~1		53		PREMI				-15				\sim			
				······	·····							+					
Relinauished 🛛	lat	Mell	00 VP 000-	Date:			Samp G - 29 A - 21 P - Pla Time:	50mg plock astic E	Glass Asbe lag	Jar stos B	ag Received	By:		· · · · · ·	Date:	-	
	3	TA	PT	1	13 11	3		3	>0	211	N	5			5/	s/r	5

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

127766

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff F

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E24192K, Pymble

3 Soils, 5 Water 11/5/2015 / 11/5/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 18/05/15
 /
 15/05/15

 Date of Preliminary Report:
 Not Issued
 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.
 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Client Reference: E24192K, Pymble

vTRH(C6-C10)/BTEXN in Water Our Reference:	UNITS	127766-1	127766-2	127766-3	127766-4	127766-8
	UNITS					
Your Reference		MW9	MW31	Creek	Dup A	TSW
Date Sampled		11/05/2015	11/05/2015	11/05/2015	11/05/2015	11/05/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/05/2015	12/05/2015	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015	13/05/2015	13/05/2015
TRHC6 - C9	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10	µg/L	<10	<10	<10	<10	[NA]
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	<10	[NA]
Benzene	µg/L	<1	<1	<1	<1	103%
Toluene	µg/L	<1	<1	<1	<1	105%
Ethylbenzene	µg/L	<1	<1	<1	<1	101%
m+p-xylene	µg/L	<2	<2	<2	<2	103%
o-xylene	µg/L	<1	<1	<1	<1	97%
Naphthalene	µg/L	<1	<1	<1	<1	[NA]
Surrogate Dibromofluoromethane	%	108	108	108	109	107
Surrogate toluene-d8	%	102	102	102	103	101
Surrogate 4-BFB	%	100	99	104	99	104

svTRH (C10-C40) in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	127766-1 MW9 11/05/2015 Water	127766-2 MW31 11/05/2015 Water	127766-3 Creek 11/05/2015 Water	127766-4 Dup A 11/05/2015 Water
Date extracted	-	12/05/2015	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015	12/05/2015
TRHC 10 - C14	µg/L	<50	<50	<50	<50
TRHC 15 - C28	µg/L	110	<100	<100	<100
TRHC29 - C36	µg/L	<100	<100	<100	<100
TRH>C10 - C16	µg/L	82	<50	<50	68
TRH>C10 - C16 less Naphthalene (F2)	µg/L	82	<50	<50	68
TRH>C16 - C34	µg/L	<100	<100	<100	<100
TRH>C34 - C40	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	95	93	91	87

PAHs in Water - Low Level				
Our Reference:	UNITS	127766-1	127766-2	127766-3
Your Reference		MW9	MW31	Creek
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Water	Water	Water
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015
Naphthalene	µg/L	<0.2	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	102	97	105

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	127766-1 MW9 11/05/2015 Water	127766-2 MW31 11/05/2015 Water	127766-3 Creek 11/05/2015 Water	127766-4 Dup A 11/05/2015 Water
Date prepared	-	12/05/2015	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015	12/05/2015
Arsenic-Dissolved	µg/L	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	µg/L	2	2	3	2
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	1	6	<1	2
Zinc-Dissolved	µg/L	58	70	10	59

Cations in water Dissolved				
Our Reference:	UNITS	127766-1	127766-2	127766-3
Your Reference		MW9	MW31	Creek
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Water	Water	Water
Datedigested	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015
Calcium - Dissolved	mg/L	19	5.0	20
Magnesium - Dissolved	mg/L	10	3.2	6.9
Hardness	mgCaCO3 /L	90	26	77

Client Reference: E24192K, Pymble

Miscellaneous Inorganics				
Our Reference:	UNITS	127766-1	127766-2	127766-3
Your Reference		MW9	MW31	Creek
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Water	Water	Water
Date prepared	-	11/05/2015	11/05/2015	11/05/2015
Date prepared Date analysed	-	11/05/2015 11/05/2015	11/05/2015 11/05/2015	11/05/2015 11/05/2015
	- - pH Units			

vTRH(C6-C10)/BTEXN in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS 	127766-5 SP1 11/05/2015 Soil	127766-6 SP2 11/05/2015 Soil	127766-7 SP3 11/05/2015 Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015
TRHC6 - C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	114	95	102

svTRH (C10-C40) in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	127766-5 SP1 11/05/2015 Soil	127766-6 SP2 11/05/2015 Soil	127766-7 SP3 11/05/2015 Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015
TRHC 10 - C14	mg/kg	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	87	92	83

PAHs in Soil				
Our Reference:	UNITS	127766-5	127766-6	127766-7
Your Reference		SP1	SP2	SP3
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Soil	Soil	Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	96	100

Organochlorine Pesticides in soil				
Our Reference:	UNITS	127766-5	127766-6	127766-7
Your Reference		SP1	SP2	SP3
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample	-	Soil	Soil	Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.4	0.2	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	0.3	0.2	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	0.3
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	95	100

Organophosphorus Pesticides Our Reference: Your Reference Date Sampled Type of sample	UNITS	127766-5 SP1 11/05/2015 Soil	127766-6 SP2 11/05/2015 Soil	127766-7 SP3 11/05/2015 Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	95	100

PCBs in Soil Our Reference: Your Reference Date Sampled	UNITS	127766-5 SP1 11/05/2015	127766-6 SP2 11/05/2015	127766-7 SP3 11/05/2015
Type of sample		Soil	Soil	Soil
Date extracted	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	105	95	100

Acid Extractable metals in soil				
Our Reference:	UNITS	127766-5	127766-6	127766-7
Your Reference		SP1	SP2	SP3
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Soil	Soil	Soil
Date digested	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	12/05/2015	12/05/2015	12/05/2015
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	8	8	7
Copper	mg/kg	7	6	4
Lead	mg/kg	42	39	8
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	2	1	2
Zinc	mg/kg	42	35	14

Client Reference: E24192K,

E24192K, P	ymble
------------	-------

Moisture				
Our Reference:	UNITS	127766-5	127766-6	127766-7
Your Reference		SP1	SP2	SP3
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Soil	Soil	Soil
Date prepared	-	12/05/2015	12/05/2015	12/05/2015
Date analysed	-	13/05/2015	13/05/2015	13/05/2015
Moisture	%	12	12	8.3

Asbestos ID - soils				
Our Reference:	UNITS	127766-5	127766-6	127766-7
Your Reference		SP1	SP2	SP3
Date Sampled		11/05/2015	11/05/2015	11/05/2015
Type of sample		Soil	Soil	Soil
Date analysed	-	14/05/2015	14/05/2015	14/05/2015
Sample mass tested	g	Approx. 50g	Approx. 45g	Approx. 70g
Sample Description	-	Brown coarse-grain soil & rocks	Brown coarse-grain soil & rocks	Brown coarse-grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Client Reference: E24192K, Pymble

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: E24192K, Pymble

Method ID	Methodology Summary

			nt Referenc		24192K, Pym			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Water					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-W1	12/05/2015
Date analysed	-			13/05/2 015	[NT]	[NT]	LCS-W1	13/05/2015
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	107%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	107%
Benzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	110%
Toluene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	109%
Ethylbenzene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	104%
m+p-xylene	µg/L	2	Org-016	2	[NT]	[NT]	LCS-W1	105%
o-xylene	µg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	106%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	96	[NT]	[NT]	LCS-W1	94%
Surrogate toluene-d8	%		Org-016	100	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%		Org-016	100	[NT]	[NT]	LCS-W1	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
svTRH (C10-C40) in					Sm#	Base II Duplicate II % RPD		Recovery
Water								
Date extracted	-			12/05/2 015	127766-1	12/05/2015 12/05/2015	LCS-W1	12/05/2015
Date analysed	-			12/05/2 015	127766-1	12/05/2015 12/05/2015	LCS-W1	12/05/2015
TRHC 10 - C 14	µg/L	50	Org-003	<50	127766-1	<50 <50	LCS-W1	98%
TRHC 15 - C28	µg/L	100	Org-003	<100	127766-1	110 100 RPD:10	LCS-W1	89%
TRHC29 - C36	µg/L	100	Org-003	<100	127766-1	<100 <100	LCS-W1	75%
TRH>C10 - C16	µg/L	50	Org-003	<50	127766-1	82 81 RPD:1	LCS-W1	98%
TRH>C16 - C34	µg/L	100	Org-003	<100	127766-1	<100 <100	LCS-W1	89%
TRH>C34 - C40	µg/L	100	Org-003	<100	127766-1	<100 <100	LCS-W1	75%
Surrogate o-Terphenyl	%		Org-003	84	127766-1	95 92 RPD:3	LCS-W1	75%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	127766-1	12/05/2015 12/05/2015	LCS-W1	12/05/2015
Date analysed	-			12/05/2 015	127766-1	12/05/2015 12/05/2015	LCS-W1	12/05/2015
Naphthalene	µg/L	0.2	Org-012 subset	<0.2	127766-1	<0.2 <0.2	LCS-W1	89%
Acenaphthylene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]
Fluorene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	86%
Phenanthrene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	92%

	Client Reference: E24192K, Pymble										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
PAHs in Water - Low Level						Base II Duplicate II % RPD					
Anthracene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]			
Fluoranthene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	91%			
Pyrene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	93%			
Benzo(a)anthracene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]			
Chrysene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	85%			
Benzo(b,j+k) fluoranthene	µg/L	0.2	Org-012 subset	<0.2	127766-1	<0.2 <0.2	[NR]	[NR]			
Benzo(a)pyrene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	LCS-W1	110%			
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]			
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]			
Benzo(g,h,i)perylene	µg/L	0.1	Org-012 subset	<0.1	127766-1	<0.1 <0.1	[NR]	[NR]			
Surrogate p-Terphenyl- d14	%		Org-012 subset	97	127766-1	102 99 RPD:3	LCS-W1	107%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
HM in water - dissolved						Base II Duplicate II % RPD					
Date prepared	-			[NT]	[NT]	[NT]	LCS-W1	12/05/2015			
Date analysed	-			[NT]	[NT]	[NT]	LCS-W1	12/05/2015			
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	99%			
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	[NT]	[NT]	LCS-W1	99%			
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	96%			
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	90%			
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	104%			
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	[NT]	[NT]	LCS-W1	100%			
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	95%			
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	[NT]	[NT]	LCS-W1	92%			

		1	ent Referenc		24192K, Pyi			
QUALITY CONTROL Cations in water Dissolved	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date digested	-			12/05/2 015	[NT]	[NT]	LCS-W1	12/05/2015
Date analysed	-			12/05/2 015	[NT]	[NT]	LCS-W1	12/05/2015
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	106%
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	107%
Hardness	mgCaCO 3/L	3		[NT]	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II % RPD		
Date prepared	-			11/05/2 015	[NT]	[NT]	LCS-W1	11/05/2015
Date analysed	-			11/05/2 015	[NT]	[NT]	LCS-W1	11/05/2015
pН	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-W1	101%
Electrical Conductivity	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-W1	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Date analysed	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	106%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	106%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	129%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	127%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	79%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-1	83%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	96%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	[NT]	[NT]	[NT]	LCS-1	94%

			ent Referenc	Blank	24192K, Pyn Duplicate		Spiles Ore !!	Spiles 0/
QUALITYCONTROL	UNITS	PQL	METHOD	Sm#		Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Date analysed	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
TRHC 10 - C 14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	108%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	116%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	110%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	108%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	116%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	110%
Surrogate o-Terphenyl	%		Org-003	80	[NT]	[NT]	LCS-1	98%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Date analysed	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	89%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	94%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	91%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	91%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	95%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-1	87%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-1	98%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	98	[NT]	[NT]	LCS-1	96%

E24192K, Pymble

Client Reference: E24192K, Pymble											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Organochlorine Pesticides in soil						Base II Duplicate II % RPD					
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015			
Date analysed	-			13/05/2 015	[NT]	[NT]	LCS-1	13/05/2015			
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	88%			
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	100%			
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	98%			
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	94%			
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	116%			
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	106%			
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	114%			
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	118%			
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	123%			
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	94%			
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]			
Surrogate TCMX	%		Org-005	105	[NT]	[NT]	LCS-1	93%			

Client Reference:

E24192K, Pymble

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
QUALITYCONTROL	UNITS	ru∟		Dial IK	Sm#	Duplicate results	Spike Sill#	Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Date analysed	-			13/05/2 015	[NT]	[NT]	LCS-1	13/05/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	88%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	115%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	94%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	93%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	103%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	93%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	112%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-008	105	[NT]	[NT]	LCS-1	105%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			12/05/2 015	[NT]	[NT]	LCS-1	12/05/2015
Date analysed	-			13/05/2 015	[NT]	[NT]	LCS-1	13/05/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-1	113%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	105	[NT]	[NT]	LCS-1	97%

Client Reference: E24192K, Pymble											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Duplicate results Sm#		Spike Sm#	Spike % Recovery			
Acid Extractable metals in soil						Base II Duplicate II % RPD					
Date digested	-			12/05/2 015	[NT]	[NT]	LCS-8	12/05/2015			
Date analysed	-			12/05/2 015	[NT]	[NT]	LCS-8	12/05/2015			
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-8	101%			
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-8	94%			
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-8	97%			
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-8	97%			
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-8	92%			
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-8	97%			
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-8	94%			
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-8	93%			

Report Comments:

Asbestos ID was analysed by Approved Identifier:	Lulu Guo
Asbestos ID was authorised by Approved Signatory:	Lulu Guo

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:	

Environmental Investigation Services	ph:	02 9888 5000
PO Box 976	Fax:	02 9888 5001
North Ryde BC NSW 1670		

Attention: Geoff F

Sample log in details:	
Your reference:	E24192K, Pymble
Envirolab Reference:	127766
Date received:	11/5/2015
Date results expected to be reported:	18/05/15
Samples received in appropriate condition for analysis:	YES
No. of samples provided	3 Soils, 4 Water
Turnaround time requested:	Standard
Temperature on receipt (°C)	7.4
Cooling Method:	Ice Pack

Comments:

Sampling Date Provided:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month Soil and other solid samples - 2 months Samples collected in canisters - 1 week. Canisters will then be cleaned. All other samples are not retained after analysis If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

YES

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

<u>TO:</u> ENVIROLAB SE 12 ASHLEY STI		PTY LTD	EIS Job Number:		E24192K]	run	<u></u>		<u>M:</u> RONN STIGA						S
CHATSWOOD P: (02) 991062 F: (02) 991062	00	67	Date Results Required:		STANDARD					SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001					, 1		
Attention: Ailee	'n		Page:		1,of 1					Atter	ntion:		ંં	Geoff	Fletch	er	
Location:	Pymble								Sam	·	eserv			n Ice			
Sampler:	GF	<u> (((((((((((((((((((</u>	1 1	<u>883</u>			<u> </u>	r—		ז 	'ests F I	Requir	ed T	<u> </u>		<u> </u>	—
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 6a	Combo 3L	Combo 1m	pH / EC	втех	Hardness						
11/05/2015	1	MW9	G1, V, H, PVC	•	Water		X		χ		X						
\ 11/05/2015	2	MW31	G1, V. H, PVC	200 - 20 200 - 20	Water		X		X		Х				Ľ,		
11/05/2015	3	Creek	G1, V, H, PVC	-	Water		X		X		X					 	
11/05/2015	4	Dup A	G1, V, H		Water			X									
11/05/2015	MB	TSW	v La sel Nevigini in	-	Water				·. ·	Х		. i	4.				
11/05/2015	5	SP1	G,A	•	Soil	X	 			agi .						28	is :
11/05/2015	t- (7	SP2	G,A	-	Soil	X					1				- 14-4		
11/05/2015	₽	SP3	G.A.	-	Soil	X											
		and a second		· .·									<u>14</u>	-			
		n na sa			Sec. 1				<u>,</u>	NB 1	ENVI	OLAE		Enviro	12 A:	hley	Şt
											Job	Ne:	ري ري	Ph: (2) 99 7 6	10 62	0
							- 14 			.2	Time	Rece	ived: ived:		5.	0.	
											Tem) Coel	ng: lo		DYA Dient Dient Broke	7 7	<u> </u>	, ,
															1//14:00 1		
All an	nalysis P	ection limits rec QLs to ANZECC	Quired):	imits Plea	ase	G1 - V - B	500m TEX \	ntaine L Aml /ial E Plas	ber Gl H	- HNC	3 Wa	sh PV	c 🕚	L Glas	90	1	<u> </u>
Relinquished By	R	5	Date:	•		Time	:	pn			ived B		/		Date: 1	15	115,

•

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

127448-A

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff Fletcher

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E24192K, Pymble Additional testing on soils

5/5/2015 / 12/05/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 19/05/15
 /
 19/05/15

 Date of Preliminary Report:
 Not Issued
 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.
 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

Client Reference: E24192K, Pymble

Misc Inorg - Soil					
Our Reference:	UNITS	127448-A-5	127448-A-13	127448-A-47	127448-A-53
Your Reference		BH3	BH9	BH31	BH33
Depth		0-0.1	0-0.3	0-0.2	0-0.2
Date Sampled		1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	15/05/2015	15/05/2015	15/05/2015	15/05/2015
Date analysed	-	15/05/2015	15/05/2015	15/05/2015	15/05/2015
pH 1:5 soil:water	pH Units	8.8	8.5	6.8	6.6
Clay in soils <2um	% (w/w)	14	14	38	28

Client Reference: E24192K, Pymble

CEC					
Our Reference:	UNITS	127448-A-5	127448-A-13	127448-A-47	127448-A-53
Your Reference		BH3	BH9	BH31	BH33
Depth		0-0.1	0-0.3	0-0.2	0-0.2
Date Sampled		1/05/2015	1/05/2015	1/05/2015	30/04/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/05/2015	14/05/2015	14/05/2015	14/05/2015
Date analysed	-	14/05/2015	14/05/2015	14/05/2015	14/05/2015
Exchangeable Ca	meq/100g	20	18	15	20
ExchangeableK	meq/100g	0.3	0.4	1.0	0.6
ExchangeableMg	meq/100g	3.8	3.8	3.2	4.7
ExchangeableNa	meq/100g	0.12	0.11	<0.1	0.67
Cation Exchange Capacity	meq/100g	24	23	20	26

E24192K, Pymble

Metals in TCLPUSEPA1311						
Our Reference Your Reference	UNITS	127448-A-5 BH3	127448-A-10 BH5	127448-A-13 BH9	127448-A-15 BH9	127448-A-38 BH25
Depth Date Sampled Type of sample		0-0.1 1/05/2015 Soil	0-0.3 4/05/2015 Soil	0-0.3 1/05/2015 Soil	1.7-1.95 1/05/2015 Soil	0-0.15 30/04/2015 Soil
Date extracted Date analysed	-	14/05/2015 14/05/2015	14/05/2015 14/05/2015	14/05/2015 14/05/2015	14/05/2015 14/05/2015	14/05/2015 14/05/2015
pH of soil for fluid# determ.	pH units	8.7	6.5	8.7	7.2	5.9
pH of soil for fluid # determ. (acid)	pHunits	1.7	1.7	1.6	1.7	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.3	4.9	5.1	4.9	4.9
Lead in TCLP	mg/L	[NA]	[NA]	[NA]	<0.03	<0.03
Nickel in TCLP	mg/L	0.06	[NA]	0.1	[NA]	[NA]
	-	Г		-		
Metals in TCLP USEPA1311						
Our Reference:	UNITS	127448-A-41	127448-A-43	127448-A-47	127448-A-59	127448-A-62
Your Reference		BH26	BH27	BH31	BH35	BH36
Depth		0-0.2	0-0.3	0-0.2	0-0.2	0-0.2
Date Sampled		30/04/2015	30/04/2015	1/05/2015	1/05/2015	1/05/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/05/2015	14/05/2015	14/05/2015	14/05/2015	14/05/2015
Date analysed	-	14/05/2015	14/05/2015	14/05/2015	14/05/2015	14/05/2015
pH of soil for fluid# determ.	pH units	5.9	6.7	6.8	6.6	7.3
pH of soil for fluid # determ. (acid)	pH units	1.7	1.7	1.6	1.7	1.6
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.9	4.9	4.9	4.9	4.9
Lead in TCLP	mg/L	0.06	0.05	0.1	<0.03	0.04

PAHs in TCLP (USEPA 1311)		
Our Reference:	UNITS	127448-A-10
Your Reference		BH5
Depth		0-0.3
Date Sampled		4/05/2015
Type of sample		Soil
Date extracted	-	13/05/2015
Date analysed	-	13/05/2015
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
AcenaphtheneinTCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98

E24192K, Pymble

Acid Extractable metals in soil		
Our Reference:	UNITS	127448-A-48
Your Reference		BH31
Depth		0.5-0.8
Date Sampled		1/05/2015
Type of sample		Soil
Date digested	-	13/05/2015
Date analysed	-	13/05/2015
Lead	mg/kg	19

E24192K, Pymble

Moisture		
Our Reference:	UNITS	127448-A-48
Your Reference		BH31
Depth		0.5-0.8
Date Sampled		1/05/2015
Type of sample		Soil
Date prepared	-	13/05/2015
Date analysed	-	14/05/2015
Moisture	%	22

Client Reference: E24192K, Pymble

MethodID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2um reported.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311 and in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Org-012 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	24192K, Pym Duplicate	Duplicate results	Spike Sm#	Spike %
QUALITICONTIOL	UNITO	l QL		Didi ik	Sm#	Duplicate results	Opike On#	Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			[NT]	[NT]	[NT]	LCS-1	15/05/2015
Date analysed	-			[NT]	[NT]	[NT]	LCS-1	18/05/2015
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-1	102%
Clay in soils <2um	% (w/w)		AS1289.3.6 .3	[NT]	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II % RPD		
Date extracted	-			14/05/2 015	127448-A- 47	14/05/2015 14/05/2015	LCS-1	14/05/2015
Date analysed	-			14/05/2 015	127448-A- 47	14/05/2015 14/05/2015	LCS-1	14/05/2015
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	127448-A- 47	15 16 RPD:6	LCS-1	102%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	127448-A- 47	1.0 1.1 RPD:10	LCS-1	103%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	127448-A- 47	3.2 3.3 RPD:3	LCS-1	100%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	127448-A- 47	<0.1 <0.1	LCS-1	104%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	127448-A- 47	20 21 RPD:5	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II % RPD		Recovery
Date extracted	-			14/05/2 015	127448-A- 47	14/05/2015 14/05/2015	LCS-1	14/05/2015
Date analysed	-			14/05/2 015	127448-A- 47	14/05/2015 14/05/2015	LCS-1	14/05/2015
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	127448-A- 47	0.1 0.1 RPD:0	LCS-1	90%
Nickel in TCLP	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-1	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHsinTCLP (USEPA 1311)					511#	Base II Duplicate II % RPD		Recovery
Date extracted	-			13/05/2 015	[NT]	[NT]	LCS-W1	13/05/2015
Date analysed	-			13/05/2 015	[NT]	[NT]	LCS-W1	13/05/2015
Naphthalene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	85%
Acenaphthylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	78%
Phenanthrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	80%

	-	Clie	nt Referenc	e: E	24192K, Pym	ble			1	
QUALITY CONTROL PAHs in TCLP (USEPA 1311)	UNITS	PQL	METHOD	Blank	Duplicate Sm#		olicate results se II Duplicate II %RPD	Spike Sm#	Spike % Recover	
Anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	[NR]		 [
Fluoranthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	LCS-W1	79%	6
Pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	LCS-W1	81%	6
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	[NR]	[NR	2]
Chrysene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	LCS-W1	77%	6
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012 subset	<0.002	[NT]		[NT]	[NR]	[NR	2]
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	LCS-W1	90%	6
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	[NR]	[NR	2]
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	[NR]	[NR	!]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]		[NT]	[NR]	[NR	!]
Surrogate p-Terphenyl- d14	%		Org-012	93	[NT]		[NT]	LCS-W1	1049	%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike % Recover	
Acid Extractable metals in soil					Sn#	Bas	se II Duplicate II %RPD		Recover	у
Date digested	-			13/05/2 015	[NT]		[NT]	LCS-10	13/05/2	2015
Date analysed	-			13/05/2 015	[NT]		[NT]	LCS-10	13/05/2	2015
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]		[NT]	LCS-10	89%	6
QUALITY CONTROL Metals in TCLP USEPA131	UNITS	6	Dup. Sm#		Duplicate Duplicate + %RP	PD.	Spike Sm#	Spike % Reco	overy	
Date extracted	-		[NT]		[NT]		127448-A-59	14/05/201	5	
Date analysed	-		[NT]		[NT]		127448-A-59	14/05/201	5	
Lead in TCLP	mg/L	.	[NT]		[NT]		127448-A-59	97%		
Nickel in TCLP	mg/L	-	[NT]		[NT]		[NR]	[NR]		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Aileen Hie

From:	Geoff Fletcher <gfletcher@jkgroup.net.au></gfletcher@jkgroup.net.au>
Sent:	Tuesday, 12 May 2015 10:31 AM
To:	Aileen Hie
Subject:	Additonal Testing 127448 (E24192K Pymble)
Importance:	High

Hi Aileen,

Could we please schedule the following additional testing on a standard turnaround time:

- 127448-5 BH3 0-0.1m pH, CEC, Clay content and TCLP Nickel;
- 127448-10 BH5 0-0.3m TCLP B(a)P;
- 127448-13 BH9 0-0.3m pH, CEC, Clay content and TCLP Nickel;
- 127448-15 BH9 1.7-1.95m TCLP Lead;
- 127448-38 BH25 0-0.15m TCLP Lead;
- 127448-41 BH26 0-0.2m TCLP Lead;
- 127448-43 BH27 0-0.3m TCLP Lead;
- 127448-47 BH31 0-0.2 pH, CEC, Clay content and TCLP Lead;
- 127448-48 BH31 0.5-0.8m for Lead;
- 127448-53 BH33 0-0.2m pH, CEC and Clay content;
- 127448-59 BH35 0-0.2m TCLP Lead; and
- 127448-62 BH36 0-0.2m TCLP Lead.

Regards,

Geoff Fletcher Environmental Scientist

<u>GFletcher@jkgroup.net.au</u> <u>www.jkgroup.net.au</u>

Environmental Investigation Services

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discretion between paper and electronic versions the paper version is to take precedence.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

127448 A Std T/A due 19/5

Appendix C: Report Explanatory Notes

STANDARD SAMPLING PROCEDURE

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993¹⁹.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.

¹⁹ Standards Australia, (1993), *Geotechnical Site Investigations*. (AS1726-1993)

- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well development) to remove any water introduced during the drilling process and/or the water that is disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
 - Filter paper for Micropore filtration system; Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/T meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;

- Low flow pump pack and associated tubing; and
- Groundwater sampling forms.
- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994²⁰) methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (H. Keith 1991²¹).

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations.

"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

²⁰ US EPA, (1994), *SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* (US EPA SW-846)

²¹ Keith., H, (1991), *Environmental Sampling and Analysis, A Practical Guide*.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms; Sample receipt form;
- All sample results reported; All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

<u>Blanks</u>

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix D: Calculation Sheets

	А	В	С	D	Е	F	G	Н		J	К	L
1		_	_					Non-Detects				_
2												
3		User Sel	ected Options									
4	Date	/Time of C	Computation	12/05/2015	3:31:55 PM							
5			From File	WorkSheet	.xls							
6		F	ull Precision	OFF								
7	C	Confidence	e Coefficient	95%								
8	Number of	Bootstrap	Operations	2000								
9												
10												
11	lead											
12						<u> </u>	o					
13			Tatal				Statistics		Number	(Distingt	N	20
14			I otal I	Number of O	bservations	34					Observations	
15					Minimum	15			Number o	t wissing C	Observations Mean	
16					Maximum	640					Median	
17					SD	107.4				Std E	rror of Mean	
18				Coefficient	of Variation	1.376				Siu. L	Skewness	
19				Coemcient		1.570					OREWIIESS	4.010
20 21						Normal (GOF Test					
21			Sh	apiro Wilk T	est Statistic	0.484			Shapiro Will	k GOF Tes	st	
22				apiro Wilk C		0.933			Normal at 5			
23				•	est Statistic	0.287			Lilliefors (-		
25			5%	6 Lilliefors C	ritical Value	0.152		Data Not	Normal at 5		ance Level	
26					Data Not	Normal at 5	% Significa			0		
27												
28					Ass	uming Nor	nal Distribu	ution				
29			95% No	ormal UCL				95% l	JCLs (Adjus	sted for Sk	ewness)	
30				95% Stuc	lent's-t UCL	109.2		95	% Adjusted-	CLT UCL	(Chen-1995)	123.9
31								95	5% Modified	-t UCL (Jo	hnson-1978)	111.6
32												
33							GOF Test					
34					est Statistic	1.506			on-Darling			
35					ritical Value	0.766	Da	ta Not Gamm			•	evel
36					est Statistic	0.216			ov-Smirnof			
37					ritical Value	0.154		ta Not Gamm		ed at 5% Si	gnificance Le	evel
38				Data	a Not Gamm	na Distribut	ed at 5% Si	gnificance L	evel			
39							<u></u>					
40							Statistics		t.			1.070
41					k hat (MLE)	1.484				-	rected MLE)	
42					a hat (MLE) u hat (MLE)	52.56 100.9					rected MLE) as corrected)	
43			N // 1	n E Mean (bia:		78				· · ·	as corrected)	
44			IVIL		s corrected)	/0		۵۵			Value (0.05)	72.07
45			Δdiuct	ed Level of S	Significance	0.0422		Ар		-	quare Value	
46			Aujust			0.0422			Auju			71.14
47 48					Ass	umina Gar	ıma Distribu	ution				
48	95%	Approxim	nate Gamma	UCL (use wł		-			sted Gamma	ucl (use	when n<50)	102.3
49 50	3070		samid	(300 11				_ 0 / 0 / Kujuč		(000		
50						Lognorma	IGOF Test					
52			Sh	apiro Wilk T	est Statistic	0.948			ro Wilk Log	normal GC	F Test	
53				apiro Wilk C		0.933		Data appear	-			el
54				Lilliefors T	est Statistic	0.145			efors Logno	-		
55			5%	6 Lilliefors C	ritical Value	0.152		Data appear	-			el
56				C	ata appear	Lognormal	at 5% Signi	ificance Leve	əl			
57												
	1											

	A B C D E	F	G	Н		J	К	L				
58	Minimum of Logged Data	Lognorma 2.708	าเวเสแรแตร			Mean of logge	ed Data	3.983				
59 60	Maximum of Logged Data	6.461				SD of logge		0.772				
61		0.401				OD of logge		0.772				
62	Assur	ning Logno	rmal Distributi	on								
63	95% H-UCL	97.11			90% C	hebyshev (MVUE	E) UCL	102.8				
64	95% Chebyshev (MVUE) UCL	117			97.5% C	hebyshev (MVUE	E) UCL	136.7				
65	99% Chebyshev (MVUE) UCL 175.3											
66												
67			tion Free UCL									
68	Data appear to follow a D	iscernible I	Distribution at	5% Sign	ificance Lev	el						
69	Nonpor	motrio Diot	ribution Free L									
70	95% CLT UCL	108.3		JULS		95% Jackknit	ifellCl	109.2				
71	95% Standard Bootstrap UCL	108.5				95% Bootstrap		153.1				
72 73	95% Hall's Bootstrap UCL	223.2			95% Pe	ercentile Bootstra		111.2				
73	95% BCA Bootstrap UCL	130.5			00/01 0							
74	90% Chebyshev(Mean, Sd) UCL	133.2			95% Che	byshev(Mean, So	d) UCL	158.3				
76	97.5% Chebyshev(Mean, Sd) UCL	193				byshev(Mean, So	-	261.2				
70						.,,.	-					
78		Suggested	UCL to Use									
79	95% H-UCL	97.11										
80												
81	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help t	he user	to select the	most appropriat	te 95% U	ICL.				
82	These recommendations are based upon the resu	Its of the si	mulation studie	s summa	arized in Sin	gh, Singh, and la	aci (2002	2)				
	and Singh and Singh (2003). Howeve	r. simulatio	ns results will r	not cover	all Real Wo	rld data sets.						
83		,										
83 84	For additional insight		ay want to con	sult a sta	tistician.							
	For additional insight	t the user m	-									
84	For additional insight ProUCL computes and outputs	t the user m s H-statistic	based UCLs	for histo	rical reason							
84 85 86 87	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and	t the user m s H-statistic d low) valu	based UCLs es of UCL95 a	for histo Is showr	rical reason in example	es in the Technic	cal Guid	е.				
84 85 86 87 88	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended	t the user m s H-statistic d low) valu d to avoid tl	c based UCLs es of UCL95 a he use of H-sta	for histo is showr atistic ba	rical reason in example ised 95% U	es in the Technic CLs.						
84 85 86 87 88 88 89	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and	t the user m s H-statistic d low) valu d to avoid tl	c based UCLs es of UCL95 a he use of H-sta	for histo is showr atistic ba	rical reason in example ised 95% U	es in the Technic CLs.						
84 85 86 87 88 89 90	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp	t the user m s H-statistic d low) valu d to avoid tl	c based UCLs es of UCL95 a he use of H-sta	for histo is showr atistic ba	rical reason in example ised 95% U	es in the Technic CLs.						
84 85 86 87 88 89 90 91	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended	t the user m s H-statistic d low) valu d to avoid tl	c based UCLs es of UCL95 a he use of H-sta	for histo is showr atistic ba	rical reason in example ised 95% U	es in the Technic CLs.						
84 85 86 87 88 89 90 91 92	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp	t the user m s H-statistic d low) valu d to avoid tl ute UCL95	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U	es in the Technic CLs.						
84 85 86 87 88 89 90 91 91 92 93	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp	t the user m s H-statistic d low) valu d to avoid tl	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason i in example ised 95% U which do no	es in the Technic CLs.	na distril					
84 85 86 87 88 89 90 91 91 92 93 94	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no	es in the Technic CLs. ot follow a gamn	ma distril	bution.				
84 85 86 87 88 89 90 91 91 92 93 93 94 95	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations	t the user m s H-statistic d low) valu d to avoid t ute UCL95 General 3 34	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. ot follow a gamm	ma distril vations Detects	bution.				
84 85 86 87 88 89 90 91 92 93 94	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E	ma distril vations Detects Detects	bution. 6 29				
84 85 86 87 88 89 90 91 92 93 94 95 96	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 5	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	of Distinct Non-E	vations Detects Detects	6 29 1				
84 85 86 87 88 89 90 91 92 93 94 95 96 97	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 5 0.6	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non-	vations Detects Detects -Detect -Detect	6 29 1 0.5				
84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 5 0.6 13	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E	vations Detects Detects -Detect -Detect	6 29 1 0.5 0.5				
84 85 86 87 88 89 90 91 92 93 92 93 94 95 96 97 98 99	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects	t the user m s H-statistic d low) valu d to avoid t ute UCL95 General 3 34 5 5 0.6 13 29.67	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E	vations Detects Detects -Detect -Detect Detect	6 29 1 0.5 0.5 85.29%				
84 85 86 87 88 90 91 92 93 94 95 95 96 97 98 99 99	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Minimum Detect Maximum Detects Variance Detectss Mean Detects	the user m s H-statistic d low) valu to avoid th ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E	vations Detects -Detect -Detect -Detect Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 99 100 101	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	t the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. ot follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447 1.671				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 99 98 99 100 101	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	t the user m s H-statistic d low) valu d to avoid t ute UCL95 General 3 34 5 0.6 13 29.67 3.26 0.9 2.232 0.345	c based UCLs es of UCL95 a he use of H-sta for skewed da Statistics	for histo as showr atistic ba ata sets	rical reason in example ised 95% U which do no which do no Number o	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 99 100 101 102 103	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	t the user m s H-statistic d low) valu d to avoid tl ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345	c based UCLs es of UCL95 a he use of H-sta for skewed da	for histo is showr atistic ba ata sets	rical reason in example ised 95% U which do no Number o Number	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD C CV E Kurtosis E SD of Logged E	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 97 98 99 100 101 102 103 104	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Norma	t the user m s H-statistic d low) valu d to avoid t ute UCL95 General 3 34 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579	t on Detects O	for histo is showr atistic ba ata sets	rical reason in example ised 95% U which do no Number o Number Shapiro Wil	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E SD of Logged E	vations Detects Detects -Detect -Detect Detects Detects Detects Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 97 98 99 100 101 102 103 104 105 106 107	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	t the user m s H-statistic d low) valu d to avoid tl ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762	t on Detects O	for histo is showr atistic ba ata sets	rical reason in example ised 95% U which do no Number of Number Shapiro Will a Not Norma	es in the Technic CLs. ot follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significal	vations Detects Detects -Detect -Detect Detects Detects Detects Detects Detects Detects Detects	6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256				
84 85 86 87 88 90 91 92 93 94 95 96 97 95 96 97 98 97 98 99 100 101 102 103 104 105 106	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Maximum Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	the user m s H-statistic d low) valu to avoid th ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461	t on Detects O	for histo is showr atistic ba ata sets	rical reason in example ised 95% U which do no Number o Number Shapiro Wil a Not Norma	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Maximum Non- Percent Non-E SD C CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significat GOF Test	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects Detects Detects	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9				
 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461 0.396	t on Detects O Deter	for histo as showr atistic ba ata sets	rical reason in example ised 95% U which do no Number o Number Shapiro Wil a Not Norma Lilliefors o a Not Norma	es in the Technic CLs. ot follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significal	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects Detects Detects	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9				
 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Maximum Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	the user m s H-statistic d low) valu d to avoid th ute UCL95 General 3 34 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461 0.396	t on Detects O Deter	for histo as showr atistic ba ata sets	rical reason in example ised 95% U which do no Number o Number Shapiro Wil a Not Norma Lilliefors o a Not Norma	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Maximum Non- Percent Non-E SD C CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significat GOF Test	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects Detects Detects	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9				
84 85 86 87 90 91 92 93 94 95 96 97 98 97 98 97 98 97 100 101 102 103 104 105 106 107 108 109 110	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Norma Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	the user m s H-statistic d low) valu to avoid th ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461 0.396 Not Norma	t on Detects O Detector	for histo as showr atistic ba ata sets ata sets nly cted Data cted Data cance Le	rical reason in example ised 95% U which do no Number o Number Number Shapiro Wil a Not Norma Lilliefors o a Not Norma	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significan GOF Test I at 5% Significan	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects Detects Detects	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9				
84 85 86 87 88 90 91 92 93 94 95 94 95 96 97 98 97 98 97 98 97 100 101 102 103 104 105 106 107 108 109 110 111 112	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and it is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects Norma Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data	the user m s H-statistic d low) valu d to avoid tl ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461 0.396 Not Norma	t on Detects O Detector	for histo as showr atistic ba ata sets ata sets nly cted Data cted Data cance Le	rical reason in example ised 95% U which do no Number o Number Number Shapiro Wil a Not Norma Lilliefors o a Not Norma svel	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD C CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significan GOF Test I at 5% Significan	ma distril vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects nce Leve	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9 1.256				
84 85 86 87 88 90 91 92 93 94 95 96 97 98 97 98 97 98 97 98 97 100 101 102 103 104 105 106 107 108 109 110	For additional insight ProUCL computes and outputs H-statistic often results in unstable (both high and It is therefore recommended Use of nonparametric methods are preferred to comp B(a)P TEQ Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Norma Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	the user m s H-statistic d low) valu to avoid th ute UCL95 General 3 34 5 5 0.6 13 29.67 3.26 0.9 2.232 0.345 al GOF Tes 0.579 0.762 0.461 0.396 Not Norma	t on Detects O Detector	for histo as showr atistic ba ata sets ata sets nly cted Data cted Data cance Le	rical reason in example ised 95% U which do no Number o Number Number Shapiro Wil a Not Norma Lilliefors o a Not Norma svel	es in the Technic CLs. Dt follow a gamm of Distinct Observ Number of Non-E of Distinct Non-E Minimum Non- Maximum Non- Percent Non-E SD E CV E Kurtosis E SD of Logged E k GOF Test I at 5% Significan GOF Test I at 5% Significan	vations Detects Detects -Detect Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects	bution. 6 29 1 0.5 0.5 85.29% 5.447 1.671 4.985 1.256 9				

	А	В	С	D	E	F	G	Н	I	J K	L	
115				95%	6 KM (t) UCL	1.59			95% KM (Per	centile Bootstrap) UCL	1.635	
116				95%	5 KM (z) UCL	1.571			95	% KM Bootstrap t UCL	8.085	
117			9	0% KM Che	ebyshev UCL	2.119			959	% KM Chebyshev UCL	2.668	
118			97.	5% KM Che	ebyshev UCL	3.431			99	% KM Chebyshev UCL	4.929	
119												
120				G	amma GOF 1	Fests on De	etected Obs	ervations	Only			
121				A-D	Test Statistic	1.056		1	Anderson-Darl	ing GOF Test		
122				5% A-D (Critical Value	0.7	Detected	d Data No	t Gamma Distr	ibuted at 5% Significan	ce Level	
123				K-S	Test Statistic	0.462			Kolmogrov-S	mirnoff GOF		
124				5% K-S (Critical Value	0.367	Detected	d Data No	t Gamma Distr	ibuted at 5% Significan	ce Level	
125				Detecte	d Data Not G	amma Dist	ributed at 59	% Signific	ance Level			
126												
127							Detected D	ata Only				
128					k hat (MLE)	0.72				ar (bias corrected MLE)	0.421	
129					eta hat (MLE)	4.53				r (bias corrected MLE)	7.74	
130					nu hat (MLE)	7.196				nu star (bias corrected)	4.212	
131			ML	E Mean (bia	as corrected)	3.26			Μ	LE Sd (bias corrected)	5.023	
132												
133							eier (KM) St	atistics				
134					k hat (KM)	0.185				nu hat (KM)	12.55	
135		Appro	oximate Chi	Square Val	ue (12.55, α)	5.592			Adjusted Chi S	quare Value (12.55, β)	5.363	
136	95% Ga	amma Appro	oximate KM	-UCL (use	when n>=50)	2.033	95	% Gamma	a Adjusted KM	-UCL (use when n<50)	2.12	
137												
138					iamma ROS S		· ·					
139		G							observations a			
140			(GROS may	not be used w	/hen kstar c	of detected d	ata is sma	all such as < 0.	1		
141									s of UCLs and			
142		For gamma	a distributed	d detected o	lata, BTVs an		iy be compu	ted using	gamma distrib	ution on KM estimates		
143					Minimum	0.01				Mean	0.488	
144					Maximum	13		Median				
145					SD	2.227		CV				
146					k hat (MLE)	0.228				ar (bias corrected MLE)	0.228	
147					eta hat (MLE)	2.139				r (bias corrected MLE)	2.144	
148					nu hat (MLE)	15.51				nu star (bias corrected)	15.48	
149			ML	E Mean (bia	as corrected)	0.488				LE Sd (bias corrected)	1.023	
150									-	evel of Significance (β)	0.0422	
151				-	ue (15.48, α)	7.595			-	quare Value (15.48, β)	7.322	
152	959	% Gamma A	Approximate	UCL (use	when n>=50)	0.994		95% Ga	mma Adjusted	UCL (use when n<50)	1.031	
153									<u></u>			
154					ognormal GOF		etected Obs	ervations	-			
155				· ·	Test Statistic	0.698		=	Shapiro Will			
156			5% Sh		Critical Value	0.762	Det	ected Data	-	al at 5% Significance L	evel	
157					Test Statistic	0.408		=	Lilliefors (
158			59		Critical Value	0.396			-	al at 5% Significance L	evel	
159				De	tected Data N	ot Lognorn	nai at 5% Si	gnificance	e level			
160				•								
161					gnormal ROS		Using Imput	ed Non-D	etects		4.007	
162					Priginal Scale	0.5				Mean in Log Scale	-4.927	
163		050/	<u> </u>		Priginal Scale	2.225			AE4/ -	SD in Log Scale	3.32	
164		95% t UC	•	-	of ROS data)	1.146			95% Pe	rcentile Bootstrap UCL	1.247	
165			9		ootstrap UCL	1.696				95% Bootstrap t UCL	5.372	
166				95% H-UC	L (Log ROS)	57.93						
167												
168						DL/2 S	tatistics					
169			DL/2	Normal					DL/2 Log-Tr			
170					original Scale	0.693				Mean in Log Scale	-1.132	
171				SD in C	original Scale	2.183				SD in Log Scale	0.761	

	А	В	С	D	E	F	G	Н	I	J	K	L
172	95% t UCL (Assumes normality) 1.326 95% H-						H-Stat UCL	0.575				
173			DL/2 is I	not a recom	mended me	thod, provid	ded for com	parisons a	nd historica	reasons		
174												
175		Nonparametric Distribution Free UCL Statistics										
176	Data do not follow a Discernible Distribution at 5% Significance Level											
177												
178	Suggested UCL to Use											
179		95% KM (BCA) UCL 1.647										
180												
181	Note	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.										
182		Recommendations are based upon data size, data distribution, and skewness.										
183	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
184	Howev	er, simulatio	ons results v	vill not cover	all Real Wo	orld data set	ts; for addition	onal insight	the user ma	y want to co	onsult a stati	stician.
185												

Appendix E: Field Work Documents

Groundwater Monitoring Well Development Report

011	Aught D	able Deviler	J			Job No		E24192K
Client:		Ausbao Pymble Pty Ltd Proposed Residential Development						MW 9
Project:					Roachworth	Well N Depth		
_ocation:	1, 1A, 3 & Road, Pyml			400	Beechworth	Depth		6m
	SH DETAILS		0.444			PVC	Dino	
K Gatic			Stal	ndpipe		PVC	пре	
	ELOPMENT I		-	014/1	D.f	<u>, </u>		6
Method:		Blue Pump)		– Before: (m)	1.9	
Date:		1/5/15			- Before:	~	4.1	Spm.
Undertake	and the second sec	GF			- After: (m)		_	
	Removed:	81		Time	– After:			
PID Readir								
Comments				_	_		_	_
	MENT MEAS							Ph (
	Removed	Temp (°C		DO	EC	E F	ьΗ	Eh (mV)
	(L)			mg/L) ラ・乙	(µS/m) 450	100	0	174.5
2		20,3				4.9	-	
5		182		13	491.6	49	5	1746
4		18.1		1-4	486.4	5	26	0-7
					1			
	1				_	-		he
						_		
						_		
						_		
					-			
						_		
			0					
Comment	s: Wake V	ey Silty.	Proped	effect.	ey dy a.	141 80	-	
				.*				
Tested By	: CF		narks:		-			2
Date Test	ed: 4/5/.5	- All	measurer	ments are o	corrected to gro	ound level		
Checked		- All	stated Vo	olumes are	in Litres for standing w	ater level		
Date:	22/8	15 - Ste	adv state	condition conductiv	s - difference in ity less than 10	the pH le	ess than	0.2 units and

Groundwater Monitoring Well Development Report

Client:	Ausbao Pyr	nble Pty Ltd			Job N	o.:	E24192K	
Project:	Proposed R	esidential Dev	nt		Well N	lo.:	MW31	
Location:	1, 1A, 3 & Road, Pymb		Avon Road and 4 & 8 Beechwort , NSW					5.50
WELL FINIS	SH DETAILS							
Gatic Gatic	Cover		Stand	pipe		PVC	Pipe	
WELL DEV	ELOPMENT I	DETAILS						
Method:		Blue Pump		SWL	– Before: (m)	5.	92m
Date:		-1/5/15 46/5	115	Time	- Before:		:	45pm
Undertaker	n By:	GF	1	SWL	– After: (m)			
Total Vol.	Removed:			Time	- After:			
PID Readin	g (ppm):							
Comments								
DEVELOPI	IENT MEASU	JREMENTS						
	Removed	Temp (°C)	-	00	EC	рН		Eh (mV)
(L)		(m	g/L)	(<i>µ</i> S/m)			
Comments	::					4		
Tested By	011	Remar						
Date Teste			asuremented Volumented		orrected to gro	und level		
Checked E	By: DAN	- SWL i	s an abbr	eviation	for standing wa			
Date:	22/8/15	differe	ence in co	onductivi	- difference in ty less than 10 well volumes a	%		0.2 units and

Groundwater Sampling Report

Client:	Ausbao P	ymble Pty Ltd				Job No.:	E24192K		
Project:	Proposed	ed Residential Development Well No.: MW9							
Location:	1, 1A, 3 Pymble, N		bad and 4 8	ad and 4 & 8 Beechworth Road, Depth (m):			6.00		
WELL FINI									
X Gatic			Sta	andpipe			PVC Pipe		
	GE DETAIL	ç.							
Method:		Peristaltic F	umn		SWL - Be	ore:	214		
Date:	-	11/5/15	ump		Time – Be		12:56		
Undertake	n Rv.	GF			Total Vol I		2		
Pump Prog	the second s				PID (ppm):				
	-				The (ppin)			_	
Time	CMP	Vol (L)	SWL (m)	Temp	DO	EC	рН	Eh	
(min)				(°C)	(mg/L)	(<i>µ</i> S/cm)	· ·	(mV)	
4.00			2.13			an	- 110		
1405		Flowell	2.27	179	3.2	950	5.49	102.7	
14:07			238	179	37	951	5.43	117.7	
14:11		1	2-53	17.8	3.2.	949	5.36	124.8	
14,14		· · · · · · · · · · · · · · · · · · ·	2.62	178	3.0	942	5-36	125 8	
14.16			*	17.8	3.1	922	5.37	126.0	
14:17				178	3.2	905	539	125.7	
14:18				17-8	3.2	892	540	125.6	
14-19			2-81	17.8	3.4	863	5.42	125.7	
4.20				17.8	36	828	544	125.6	
14.21		2		17.8	37	805	546	125.7	
			1 1 2	1.					
		- A 5.	tert. Sn.	mphing .					
								-	
Containers	l s Used/Com	ments wat	Sily, No 7	Freepherse	detected	with Int	erfae Pro	lae,	
2 × 5	500ml	Amber 1x	HNO2	2 > V	· 4 , 1 x	250m/ F	M(
201	A IY	soant a	nhe,	Zavials	, 1x Hh	DI.			
Tested By	: 6F		Remarks:	2					
Date Test	ed: 11/51,	5	- All measurements are corrected to ground level						
Checked E	By: K				on for standing			•. •	
Date:	mila				ns - difference		s than 0.2 ui	nits and	
	(1647		aitterence	e in conduct	ivity less than	10%			

Groundwater Sampling Report

Client:	Aushao Pur	nble Pty Ltd				Job No.:	E24192K			
Client: Project:	Proposed Residential Development					Well No.:				
Location:					orth Road.	Depth (m):	MW31 5.50			
	Pymble, NSW									
WELL FINIS	SH						DV(0 D'			
X Gatic C	Cover			Standpipe			PVC Pipe			
WELL PUR	GE DETAILS				1		1.1.0			
Method:		Peristaltic F	Pump		SWL - Bet		4.62			
Date:		11/5/15			Time – Be	a mail and a state of the state	14:00			
Undertaker	n By:	GF			Total Vol I					
Pump Prog	ram No:				PID (ppm)					
PURGING /	SAMPLING	MEASUREN	NENTS			7				
Time (min)	СМР	Vol (L)	SWL (m) Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)		
	sa dia	du to	las s	WL						
Stert	sempling		1000 0							
		······································								
					-					
						-				
			1							
	· · · · · · · · · · · · · · · · · · ·									
		-								
					-					
			-		-					
			-							
					-					
					-					
						р				
	-									
						- lo place	Poplar			
Container	s Used/Com	ments No .	treephai	e detectes	n with	IN THE FICE	I OWNE A			
2 * 500	ml ambe	1 , 2 × VI	<u><1) ×</u>	HND3, 1)	250~10	10				
Tested By	GF		Remar	ks:						
	ed: 11/5/15			easurements ar	e corrected to	ground level				
Checked I	15 8 10		- SWL	is an abbreviati	on for standin	g water level				
Date:	-y. KOL		- Stead	y state conditio	ons - differenc	e in the pH le	ss than 0.2 ເ	inits and		
Dale.	22/5/5		differ	 Steady state conditions - difference in the pH less than 0.2 units and difference in conductivity less than 10% 						

***** Calibrate: ORP

Date 11/05/15 DD/MM/YY

Time 12:55:31 24-hour

User ID: GF

Cal Solution Value: 239.279999 ORP mV

Sensor Value: 239.300003 ORP mV

Temperature 19.500000 °C

Offset 44.230009

Calibrate Status Calibrated

***** Calibrate: pH

Date	11/05/15 DD/MM/YY

Time 12:54:11 24-hour

User ID: GF

Buffer Value	7.023014 pH
--------------	-------------

Sensor Value: -35.299999 pH mV

Temperature 19.749994 °C

Buffer Value 4.001713 pH

Sensor Value: 128.899994 pH mV

Temperature 19.649988 °C

Slope 55.340338 mV/pH

Slope 93.606797 % of Ideal pH Value

Calibrate Status Calibrated

***** Calibrate: Conductivity

Date 11/05/15 DD/MM/YY

Time 12:50:17 24-hour

User ID: GF

- Method Conductance
- Cal Value: 1248.000000 C-uS/cm
- Sensor Value: 1248.000000 C-uS/cm
- Temperature Ref. 20.000000 °C
- Temperature Comp. 1.910000 %/C
- TDS Constant 0.650000
- Temperature 19.500000 °C
- Cal Cell Constant: 4.919540
- Calibrate Status Calibrated

***** Calibrate: DO

Date 11/05/15 DD/MM/YY

Time 12:48:37 24-hour

User ID: GF

Method	DO Air Calibrate
Cal Value:	100.000000 %
Sensor Value:	4.264259 uA
Sensor Type	Polarographic
Membrane Type	1.25 PE Yellow
Salinity Mode	4.264259 Auto
Temperature	18.500000 °C
Barometer	752.900024 mmHg
Calibrate Status	Calibrated

***** Calibrate: ORP

Date	04/05/15 DD/MM/YY

Time 15:00:00 24-hour

User ID: GF

Sensor Value: 231.399994 ORP mV

Temperature 20.200001 °C

Offset 44.250013

Calibrate Status Calibrated

***** Calibrate: pH

Date	04/05/15 DD/MM/YY
Dute	

Time 14:59:35 24-hour

User ID: GF

- Buffer Value 7.021807 pH
- Sensor Value: -34.900002 pH mV
- Temperature 20.149988 °C
- Buffer Value 4.002100 pH
- Sensor Value: 129.500000 pH mV
- Temperature 20.450006 °C

Slope 55	.286472 mV/pH
----------	---------------

Slope 93.515683 % of Ideal pH Value

Calibrate Status Calibrated

***** Calibrate: Conductivity

Time 14:55:16 24-hour

User ID: GF

Method Conductance

Cal Value: 1302.000000 C-uS/cm

Sensor Value: 1310.000000 C-uS/cm

Temperature Ref. 20.000000 °C

Temperature Comp. 1.910000 %/C

TDS Constant 0.650000

Temperature 20.100000 °C

Cal Cell Constant: 4.919538

Calibrate Status Calibrated

***** Calibrate: DO

Date 04/05/15 DD/MM/YY

Time 14:54:40 24-hour

User ID: GF

Cal Value: 100.00000 %

Sensor Value: 4.899619 uA

Sensor Type Polarographic

Membrane Type 1.25 PE Yellow

Salinity Mode 4.899619 Auto

Temperature 21.299999 °C

Barometer 747.400024 mmHg

Calibrate Status Calibrated

		Dissolved Oxygen		ORP_1	pH_1	Temperat			
Timestamp	Specific Conductance (uS/cm)	(mg/L)		(mV)	(Units)	ure (C)	Site	Folder	Unit ID
4/05/2015 15:14	55.2		8.9	213.3	4.62	20.5	E24192K	MW09	EIS YSI2
4/05/2015 15:15	504		1.2	173.8	5.02	18.1	E24192K	MW09	EIS YSI2
11/05/2015 14:04	990		3.2	97.7	5.5	17.9	E24192K	MW9	EIS YSI2
11/05/2015 14:05	520		6	122	5.29	17.9	E24192K	MW9	EIS YSI2
11/05/2015 14:06	992		3.6	115.4	5.46	17.9	E24192K	MW9	EIS YSI2
11/05/2015 14:07	991		3.6	118.8	5.43	17.9	E24192K	MW9	EIS YSI2
11/05/2015 14:08	991		3.4	121.2	5.41	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:09	991		3.4	123.1	5.39	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:10	990		3.3	124.4	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:11	989		3.1	125.1	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:12	989		3	125.3	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:13	985		3	125.5	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:14	981		3	125.6	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:15	974		3.1	125.7	5.37	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:16	960		3.1	125.9	5.39	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:17	940		3.2	125.6	5.4	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:18	912		3.3	125.6	5.42	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:19	883		3.5	125.6	5.43	17.8	E24192K	MW9	EIS YSI2
11/05/2015 14:20	853		3.6	125.7	5.45	17.8	E24192K	MW9	EIS YSI2